$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유기인 계열 독성화합물 분해를 위한 촉매반응의 최신 연구 동향
Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds 원문보기

공업화학 = Applied chemistry for engineering, v.30 no.5, 2019년, pp.513 - 522  

계영식 (육군사관학교 물리화학과) ,  정근홍 (육군사관학교 물리화학과) ,  김동욱 (육군사관학교 물리화학과)

초록
AI-Helper 아이콘AI-Helper

유기물질, 전이금속 및 유기-금속 구조체(MOFs)를 기반으로 하는 촉매들이 유기인 계열 독성물질들을 분해하고 제거하는데 효과적임이 보고되어 왔다. 최근 20년간 독성물질 분해연구를 위해 다공성 MOFs들이 응용 목적에 맞게 디자인되고 합성되었다. $Zr_6$ 기반의 금속노드와 유기결합체를 가지는 MOFs들은 세공크기, 공극률, 표면적, Lewis acidic 자리 그리고 열적 안정성 등과 같은 기본구조내의 변형이 가능하기 때문에 화학작용제, 살충제 및 제초제를 제거하는 촉매로 널리 사용되어왔다. 본 리뷰에서는 구조, 안정성, 입자크기, 연결된 리간드 수, 유기 기능기 등에 따른 MOFs들의 촉매효율과의 연관성을 다루게 될 것이다.

Abstract AI-Helper 아이콘AI-Helper

Catalysts based on organic compounds, transition metal and metal-organic frameworks (MOFs) have been applied to degrade or remove organophosphorus toxic compounds (OPs). During the last 20 years, various MOFs were designed and synthesized to suit application purposes. MOFs with $Zr_6$ bas...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 이유로 MOFs는 수소나 메탄가스 등의 저장[52-56], 물질의 분리[57], 물질 포획[58-60], 촉매[61-65], 약물전달[66] 등의 응용분야에 널리 사용되고 있다. 본 리뷰에서는 MOFs가 큰 표면적, 큰 부피와 활성 자리, 세공크기, 구조변형, 화학적 및 열적 안정성 등 촉매로서의 역할을 극대화할 수 있는 특징을 가지기 때문에 촉매로 사용한 연구에 국한하여 기술하고자 한다[67-69].
  • In-situ로 31P NMR을 사용한 연구에서는 사용되는 물질이 독성물질임을 감안하여 안전사고 방지를 위하여 이중 O-ring으로 독성물질을 차단할 수 있는 NMR rotor를 사용하였다. 이들 연구에서는 산화금속 표면에 직접 독성물질을 반응시켜 공기와 수분에 대한 안정성과 분해 후 2차 독성물질 발생되는 현상을 보고하였다. Zr(OH)4를 이용한 연구에서는 VX 분해 반감기(t1/2)가 1 min, GD의경우 8.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유기인 화합물(organophosphorus compounds, OPs)의 특징은 무엇인가? 유기인 화합물(organophosphorus compounds, OPs)은 카르복실계 에스테라제(carboxylic esterase) 효소를 강력하게 억제함으로써 신경계통에 작용하며, 이러한 특성으로 인해 살충제, 제초제 및 화학작용제 등에 다양하게 사용되고 있다. 유기인 화합물들의 화학구조에 따른 일반 명칭은 Figure 1에 나타내었다.
su-pertropical bleach (STB)의 단점은 무엇인가? 그러나 이러한 표백제는 독성물질 제독제로 사용하기에는 몇 가지 단점이 있다. 첫째로는 저장 기간 중 활성 염소량이 점차 감소하므로 사용 직전에 혼합해야 하기 때문에 운용에 불편하고, 둘째로는 독성물질을 산화시키는데 표백제의 양이 많이 필요하므로보관 및 저장에 용이하지 않으며, 셋째로 장비와 의류의 표면을 부식시킨다는 점이다. 이와 같은 단점을 보완하기 위해 디에틸렌트리아민(H2NCH2CH2NHCH2CH2NH2), 에틸렌글리콜 모노메틸에테르(CH3OCH2CH2OH), NaOH로 구성된 decon-taminating solution 2 (DS2)가 1960년에 연구 개발되었다.
독성물질을 제거하는 방법에는 어떤 것들이 있는가? 독성물질을 제거하는 방법에는 산화제와 강염기성 촉매를 사용하여 독성을 저감시키는 화학적 방법, 흡착제를 사용하거나 물로 씻어내는 물리적 방법, 특정 독성물질을 해독하는 박테리아나 효소를 이용하는 생물학적 방법 등이 있다[8-11]. 최초의 제독제로 Ca(OCl)2기반의 표백제 분말(bleaching powder)이 사용되었으며[12], 과량의 표백제를 사용할 경우 화학작용제와 격렬히 반응하여 독성이 약하거나 무독성인 물질로 변환시킨다.
질의응답 정보가 도움이 되었나요?

참고문헌 (94)

  1. S. Chauhan, S. Chauhan, R. D'Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik, Chemical warfare agents, Environ. Toxicol. Pharmacol., 26, 113-122 (2008). 

  2. J. Lavoie, S. Srinivasan, and R. Nagarajan, Using cheminformatics to find simulants for chemical warfare agents, J. Hazard. Mater., 194, 85-91 (2011). 

  3. M. Enserink, U. N. taps special labs to investigate Syrian attack, Science, 341, 1050-1051 (2013). 

  4. A. M. Howitt and R. L. Pangi, Countering Terrorism: Dimension of Preparedness, 356-357, The MIT Press, Cambridge, Massachusetts, USA (2003). 

  5. T. Nakagawa and A. T. Tu, Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia, Forensic Toxicol., 36, 542-544 (2018). 

  6. L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214, 167-181 (2005). 

  7. M. Bennett, TICs, TIMs, and terrorists commodity chemicals take on a sinister role as potential terrorist tools, Todays Chemist at Work, 12, 21-26 (2003). 

  8. A. W. Khan, S. Kotta, S. H. Ansari, J. Ali, and R. K. Sharma, Recent advances in decontamination of chemical warfare agents, Def. Sci. J., 63, 487-496 (2013). 

  9. K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011). 

  10. F. M, Raushel, Catalytic detoxification, Nature, 469, 310-311 (2011). 

  11. B. M. Smith, Catalytic methods for the destruction of chemical warfare agents under ambient conditions, Chem. Soc. Rev., 37, 470-478 (2008). 

  12. Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992). 

  13. N. J. Rabkin, United States General Accounting Office Reports: DOD should Eliminate DS2 from Its Inventory of Decontaminants, GAO, Gaithersburg, Maryland, USA (1990). 

  14. M. Rani and U. Shanker, Degradation of traditional and new emerging pesticides in water by nanomaterials: Recent trends and future recommendations, Int. J. Environ. Sci. Technol., 15, 1347-1380 (2018). 

  15. D. B. Kim, B. Gweon, S. Y. Moon, and W. Choe, Decontamination of the chemical warfare agent simulant dimethylmethylphosphonate by means of large-area low-temperature atmospheric pressure plasma, Curr. Appl. Phys., 9, 1093-1096 (2009). 

  16. R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, o-Iodosobenzoate: Catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983). 

  17. H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002). 

  18. R. A. Moss, K. W. Alwis, and J. S. Shin, Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates, J. Am. Chem. Soc., 106, 2651-2655 (1984). 

  19. R. A. Moss, D. Bolikal, H. D. Durst, and J. W. Hovanec, Polymer-bound iodosobenzoate reagents for the cleavage of reactive phosphates, Tetrahedron Lett., 29, 2433-2436 (1988). 

  20. R. A. Moss and Y. C. Chung, Immobilized iodosobenzoate catalysts for the cleavage of reactive phosphates, J. Org. Chem., 55, 2064-2069 (1990). 

  21. I. W. Yang, J. S. Kim and Y. J. Chung, Catalytic hydrolysis reactions of alkylammonium IBA, J. Korean. Ind. Eng. Chem., 13, 407-410 (2002). 

  22. I. W. Yang and D. G. Kang, A study on the synthesis of bis-IBA derivatives and their catalytic effects on the hydrolysis reaction of nerve agents, J. Korean Inst. Mil. Sci. Technol., 2, 73-81 (1999). 

  23. K. K. Ghosh, D. S Sinha, M. L. Satnami, A. K. Shrivastave, D. K. Dubey, and G. L. Mundhara, Kinetic study of hydrolytic decomposition of organophosphates and thiophosphate by N-hydroxyamides in cationic micellar media, Indian J. Chem., 45, 726-730 (2006). 

  24. R. K. Kalakuntla, T. Wille, R. Le Provost, S. Letort, G. Reiter, S. Muller, H. Thiermann, F. Worek, G. Gouhier, O. Lafont, and F. Estour, New modified-cyclodextrin derivatives as detoxifying agents of chemical warfare agents(I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay, Toxicol. Lett., 216, 200-205 (2013). 

  25. A. Saxena, A. Sharma, B. Singh, M. V. S. Suryanarayana, T. H. Mahato, M. Sharma, R. P. Semwal, A. K. Gupta and K. Sekhar, Kinetics of in-situ degradation of nerve agent simulants and sarin on carbon with and without impregnants, Carbon Sci., 6, 158-165 (2005). 

  26. T. Wagner-Jauregg, B. E. Hackley Jr., T. A. Lies, O. O. Owens, and R. Proper, Model reactions of phosphorus-containing enzyme inactivators. IV. The catalytic activity of certain metal salts and chelates in the hydrolysis of diisopropyl fluorophosphate, J. Am. Chem. Soc., 77, 922-929 (1955). 

  27. R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963). 

  28. R. L. Gustafson and A. E. Martell, A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (sarin), J. Am. Chem. Soc., 84, 2309-2316 (1962). 

  29. Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010). 

  30. Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. Korean Inst. Mil. Sci. Technol., 15, 699-704 (2012). 

  31. G. W. Wagner and P. W. Bartram, Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY, Langmuir, 15, 8113-8118 (1999). 

  32. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize MgO, J. Phys. Chem. B, 103, 3225-3228 (1999). 

  33. G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104, 5118-5123 (2000). 

  34. G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, Reactions of VX, GB, GD, and HD with nanosize $Al_2O_3$ . formation of aluminophosphonates, J. Am. Chem. Soc., 123, 1636-1644 (2001). 

  35. G. W. Wagner, L. R. Procell, and S. Munavalli, $^{27}Al$ , $^{47,49}Ti$ , $^{31}P$ , and $^{13}C$ MAS NMR study of VX, GD, and HD reactions with nanosize $Al_2O_3$ , conventional $Al_2O_3$ and $TiO_2$ , and aluminum and titanium metal, J. Phys. Chem. C., 111, 17564-17569 (2007). 

  36. G. W. Wagner, Q. Che and Y. Wu, Reactions of VX, GD, and HD with nanotubular titania, J. Phys. Chem. C., 112, 11901-11906 (2008). 

  37. T. J. Bandosz, M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, and G. W. Wagner, Reactions of VX, GD, and HD with $Zr(OH)_4$ : Near instantaneous decontamination of VX, J. Phys. Chem. C., 116, 11606-11614 (2012). 

  38. K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018). 

  39. J. K. Yang, S. I. Chang, S. G. Ryu, and Y. S. Yang, Catalytic effects of Cu(II)-TMED and Cu(II)-BIPY on the hydrolysis of p-nitrophenol diphenyl phosphate, Bull. Korean Chem. Soc., 15, 261-263 (1994). 

  40. S. J. Oh, C. W. Yoon, and J. W. Park, Catalytic hydrolysis of phosphate triesters by lanthanide(III) cryptate (2.2.1) complexes, J. Chem. Soc. Perkin Trans. 2, 3, 329-331 (1996). 

  41. W. Y. Chung and Y. S. Kye, A study on the hydrolysis of sarin and soman by merrifield-type diaminatedpolystyrene-Cu(II) heterogeneous polymers, J. Korean Inst. Mil. Sci. Technol., 3, 164-175 (2000). 

  42. G. W. Wagner, G. W. Peterson, and J. J. Mahle, Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: The development of self-decontaminating paints, Ind. Eng. Chem. Res., 51, 3598-3603 (2012). 

  43. O. M .Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995). 

  44. N. L. Rosi, M. Eddaoudi, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Advances in the chemistry of metal-organic frameworks, Cryst. Eng. Comm., 4, 401-404 (2002). 

  45. M. H. Yap, K. L. Fow, and G. Z. Chen, Synthesis and applications of MOF-derived porous nanostructures, Green Energy Environ., 2, 218-245 (2017). 

  46. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th ed., 140-141, 194-195, Elsevier, Netherlands (2007). 

  47. J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization, J. Catal., 360, 160-167 (2018). 

  48. I. Suzuki, S. Oki, and S. Namba, Determination of external surface areas of zeolites, J. Catal., 100, 219-227 (1986). 

  49. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?, J. Am. Chem. Soc., 134, 15016-15021 (2012). 

  50. H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem., 50, 9147-9152 (2011). 

  51. H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, and O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018-1023 (2012). 

  52. M. Eddaoudi, J. H. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002). 

  53. M. P. Suh, H. J. Park, T. K. Prasad, and D. W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835 (2012). 

  54. H. W. Langmi, J. Ren, B. North, M. Mathe, and D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review, Electrochim. Acta, 128, 368-392 (2014). 

  55. Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges, J. Am. Chem. Soc., 135, 11887-11894 (2013). 

  56. Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49, 483-493 (2016). 

  57. H. Furukawa, K. E. Cordova, M. O'Keee, and O. M. Yaghi, The chemistry and applications of metalorganic frameworks, Science, 341, 974-990 (2013). 

  58. I. Matito-Martos, P. Z. Moghadam, A. Li, V. Colombo, J. A. R. Navarro, S. Calero, and D. Fairen-Jimenez, Discovery of an optimal porous crystalline material for the capture of chemical warfare agents, Chem. Mater., 30, 4571-4579 (2018). 

  59. C. Montoro, F. Linares, E. Q. Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, and J. A. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks, J. Am. Chem. Soc., 133, 11888-11891 (2011). 

  60. N. M. Padial, E. Q. Procopio, C. Montoro, E. Lopez, J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barea, and J. A. Navarro, Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. Int. Ed., 52, 8290-8294 (2013). 

  61. Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang, Metal-organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362, 1-23 (2018). 

  62. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459 (2009). 

  63. J. B. Decoste and G. W. Peterson, Metal organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014). 

  64. M. S. Lee, S. J. Garibay, A. M. Ploskonka, and J. B. DeCoste, Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents, MRS Commun., 9, 464-473 (2019). 

  65. Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017). 

  66. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed., 45, 5974-5978 (2006). 

  67. N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357-3385 (2017). 

  68. R. S. Vemuri, P. D. Armatis, J. R. Bontha, B. P. McGrail, and R. K. Motkuri, An overview of detection and neutralization of chemical warfare agents using metal organic frameworks, J. Bioterror. Biodef., 6: 137 (2015) 

  69. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater., 1, 15018-15032 (2016). 

  70. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). 

  71. R. Zou, R. Zhong, S. Han, H. Xu, A. K. Burrell, N. Henson, J. L. Cape, D. D. Hickmott, T. V. Timofeeva, T. E. Larson, and Y. Zhao, A porous metal-organic replica of ${\alpha}-PbO_2$ for capture of nerve agent surrogate, J. Am. Chem. Soc., 132, 17996-17999 (2010). 

  72. S. Sabale, J. Zheng, R. S. Vemuri, X. Y. Yu, B. P. McGrail, and R. K. Motkuri, Recent advances in metal-organic frameworks for heterogeneous catalyzed organic transformations, Synth. Catal., 1, 1-8 (2016). 

  73. G. W. Peterson and G. W. Wagner, Detoxification of chemical warfare agents by CuBTC, J. Porous Mater., 21, 121-126 (2014). 

  74. S. Wang, L. Bromberg, H. Schreuder-Gibson, and T. A. Hatton, Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines, ACS Appl. Mater. Interfaces, 5, 1269-1278 (2013). 

  75. Y. Liu. S. Y. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS. Nano, 9, 12358-12364 (2015). 

  76. Y. Liu, A. J. Howarth, J. T. Hupp, and O. K. Farha, Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework, Angew. Chem. Int. Ed., 54, 9001-9005 (2015). 

  77. P. Li, R. C. Klet, S. Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H. J. Park, S. S. Al-Juaid, J. T. Hupp, and O. K. Farha, Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulants, Chem. Commun., 51, 10925-10928 (2015). 

  78. J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015). 

  79. R. J. Drout, L. Robison, Z. Chen, T. Islamoglu, and O. K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem., 1, 304-317 (2019). 

  80. S. Y. Moon, Y. Liu, T. T. Hupp, and O. K. Farha, Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework, Angew. Chem., Int. Ed., 54, 6795-6799 (2015). 

  81. M. J. Katz, S. Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp, and O. K. Farha, Exploiting parameter space in MOFs: A 20-fold enhancement of phosphate-ester hydrolysis with UiO-66- $NH_2$ , Chem. Sci., 6, 2286-2291 (2015). 

  82. J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, and G. N. Parsons, Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs, Angew. Chem. Int. Ed., 55, 13224-13228 (2016). 

  83. S. Y. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, G. J. B. DeCoste, J. T. Hupp, and O. K. Farha, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using $Zr_6$ -based metal-organic frameworks, Inorg. Chem., 54, 10829-10833 (2015). 

  84. M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66- $NH_2$ , MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017). 

  85. T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017). 

  86. H. Shigekawa, M. Ishida, K. Miyake, R. Shioda, Y. Iijima, T. Imai, H. Takahashi, J. Sumaoka, and M. Komiyama, Extended X-ray absorption fine structure study on the cerium(IV)-induced DNA hydrolysis: Implication to the roles of 4f orbitals in the catalysis, Appl. Phys. Lett., 74, 460-462 (1999). 

  87. M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha, and J. T. Hupp, Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants, Angew. Chem. Int. Ed., 53, 497-501 (2013); Angew. Chem., 126, 507-511 (2014). 

  88. R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, and S. T. Nguyen, Enhanced catalytic activity through the tuning of micropore environment and supercritical $CO_2$ processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant, J. Am, Chem. Soc., 135, 11720-11723 (2013). 

  89. A. Pankajakshan, M. Sinha, A. A. Ohja, and S. Mandal, Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media, ACS Omega, 3, 7832-7839 (2018). 

  90. Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Z. Li, Y. Suo, T. Li, and J. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent, J. Mater. Chem. A, 6, 2184-2192 (2018). 

  91. S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a Zr6-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016). 

  92. M. K. Kim, S. H. Kim, M. G. Park, S. G. Ryu, and H. S. Jung, Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66- $NH_2$ , RSC Adv., 8, 41633-41638 (2018). 

  93. E. Lopez-Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Perez, J. L. Cenis, E. Barea, and J. A. R. Navarro, Textile metal-organic framework composites as self-detoxifying filters for chemical warfare agents, Angew. Chem. Int. Ed., 54, 6790-6794 (2015). 

  94. R. Gil-San-Millan, E. Lopez-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodriguez-Albelo, J. E. Oltra, E. Barea, and J A. R. Navarro, Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites, ACS Appl. Mater. Interfaces, 9, 23967-23973 (2017). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로