$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 토도로카이트 내 Mg2+ 배위구조에 대한 고전분자동력학 연구
A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.32 no.3, 2019년, pp.151 - 162  

김주혁 (강원대학교 자연과학대학 지질학과) ,  이진용 (강원대학교 자연과학대학 지질학과) ,  권기덕 (강원대학교 자연과학대학 지질학과)

초록
AI-Helper 아이콘AI-Helper

토도로카이트(todorokite)는 $3{\times}3$ 망간 팔면체로 이루어진 상대적으로 큰 나노공극(nanopore)을 가지는 터널구조의 산화망간광물로 나노공극에 다양한 양이온 함유가 가능하기 때문에 금속이온 거동에 큰 역할을 할 수 있다. 주로 결정도가 낮고 다른 산화망간광물들과 함께 집합체로 발견되어 나노 공극 내부 양이온의 배위(coordination)구조는 실험만으로 여전히 규명하기 매우 어렵다. 이번 논문에서는 고전분자동력학(classical molecular dynamics, MD) 시뮬레이션을 이용하여 토도로카이트 터널에 함유된 $Mg^{2+}$ 이온의 배위구조에 대한 연구결과를 처음으로 소개한다. 기존 실험에서는 토도로카이트 내부에 함유된 $Mg^{2+}$가 공극의 중앙에 우세하게 자리한다고 알려져 있다. MD 시뮬레이션 결과, $Mg^{2+}$ 이온의 약 60 %가 나노공극의 중앙에 위치하지만, 약 40 %의 $Mg^{2+}$는 광물의 표면에 해당하는 공극의 코너에 위치하였다. 공극 중앙의 $Mg^{2+}$는 수용액에서처럼 물 분자와 6배위수를 보였다. 공극 코너의 $Mg^{2+}$ 역시 6배위수를 보였는데, 물 분자 이외에도 망간 팔면체 표면 산소와 배위를 보였다. $Mg^{2+}$ 이온의 동적 거동을 파악하기 위해 계산한 평균 제곱 변위(mean squared displacement) 결과에서는, 수용액 벌크(bulk) 상태에서 갖는 물 분자와 양이온의 동적 성질이 토도로카이트 1D 나노공극에서는 유지되지 못하고 잃어버리는 것을 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure ...

Keyword

참고문헌 (64)

  1. Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Oxford University Press, New York, 408p. 

  2. Atkins, A.L., Shaw, S., and Peacock, C.L. (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. Geochimica et Cosmochimica Acta, 189, 158-183. 

  3. Babu, C.S. and Lim, C. (2006) Empirical force fields for biologically active divalent metal cations in water. The Journal of Physical Chemistry A, 110, 691-699. 

  4. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. (1987) The missing term in effective pair potentials. The Journal of Physical Chemistry, 91, 6269-6271. 

  5. Berendsen, H.J.C., Postma, J.P., van Gunsteren, W.F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration. In: Pullman, B. (eds.), Intermolecular Forces, Reidel, Dordrecht, 331-342pp. 

  6. Bernal, J.D. and Fowler, R.H. (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515-548. 

  7. Bodei, S., Manceau, A., Geoffroy, N., Baronnet, A., and Buatier, M. (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716. 

  8. Burns, R.G. and Burns, V.M. (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Philosophical Transactions for the Royal Society of London A, 286, 283-301. 

  9. Burns, V.M. and Burns, R.G. (1978) Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth and Planetary Science Letters, 39, 341-348. 

  10. Burns, R.G., Burns, V.M., and Stockman, H.W. (1985) The todorokite-buserite problem: Further considerations. American Mineralogist, 70, 205-208. 

  11. Byles, B.W., West, P., Cullen, D.A., More, K.L., and Pomerantseva, E. (2015) Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries. RSC Advances, 5, 106265-106271. 

  12. Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York, 288p. 

  13. Chitrakar, R., Makita, Y., and Sonoda, A. (2014) Cesium adsorption by synthetic todorokite-type manganese oxides. Bulletin of the Chemical Society of Japan, 87, 733-739. 

  14. Cui, H., Feng, X., Tan, W., Zhao, W., Wang, M.K., Tsao, T.M., and Liu, F. (2010) Synthesis of a nanofibrous manganese oxide octahedral molecular sieve with Co $(NH_3)_6^^{3+}$ complex ions as a template via a reflux method. Crystal Growth and Design, 10, 3355-3362. 

  15. Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266. 

  16. Duncan, M.J., Leroux, F., Corbett, J.M., and Nazar, L.F. (1998) Todorokite as a Li insertion cathode comparison of a large tunnel framework " $MnO_2$ " structure with its related layered structures. Journal of the Electrochemical Society, 145, 3746-3757. 

  17. Dyer, A., Pillinger, M., Newton, J., Harjula, R., Moller, T., and Amin, S. (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12, 3798-3804. 

  18. Ewald, P.P. (1921) The computation of optical and electrostatic lattice potentials. Annalen der Physik, 64, 253-287. 

  19. Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K. (1995) Metal ion extraction/insertion reactions with todor okite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7, 1722-1727. 

  20. Feng, X.H., Tan, W.F., Liu, F., Wang, J.B., and Ruan, H.D. (2004) Synthesis of todorokite at atmospheric pressure. Chemistry of Materials, 16, 4330-4336. 

  21. Frierdich, A.J., Hasenmueller, E.A., and Catalano, J.G. (2011) Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in karst systems. Chemical Geology, 284, 82-96. 

  22. Gao, T., Shi, Y., Liu, F., Zhang, Y., Feng, X., Tan, W., and Qiu, G. (2015) Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. Journal of Hazardous Materials, 290, 106-116. 

  23. Ghodbane, O., Pascal, J.L., and Favier, F. (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Applied Materials and Interfaces, 1, 1130-1139. 

  24. Goldberg, E.D. (1954) Marine geochemistry 1. Chemical scavengers of the sea. Journal of Geology, 62, 249-265. 

  25. Golden, D.C., Chen, C.C., and Dixon, J.B. (1986) Synthesis of todorokite. Science, 231, 717-719. 

  26. Gonzalez, M.A. (2011) Force fields and molecular dynamics simulations. ecole Thematique de la Societe Francaise de la Neutronique, 12, 169-200. 

  27. Gutzmer, J. and Beukes, N.J. (2000) Asbestiform manjiroite and todorokite from the Kalahari manganese field, South Africa. South African Journal of Geology, 103, 163-174. 

  28. Halgren, T.A. (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 114, 7827-7843. 

  29. Harris, K.R. and Woolf, L.A. (1980) Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. Journal of the Chemical Society, Faraday Transactions 1, 76, 377-385. 

  30. Holz, M., Heil, S.R., and Sacco, A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Physical Chemistry Chemical Physics, 2, 4740-4742. 

  31. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38. 

  32. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926-935. 

  33. Julien, C. and Mauger, A. (2017) Nanostructured $MnO_2$ as electrode materials for energy storage. Nanomaterials, 7, 396. 

  34. Lind, C.J. and Hem, J.D. (1993) Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: A mining-related acid drainage problem. Applied Geochemistry, 8, 67-80. 

  35. Luo, J., Zhang, Q., Huang, A., Giraldo, O., and Suib, S.L. (1999) Double-aging method for preparation of stabilized Na- buserite and transformations to todorokites incorporated with various metals. Inorganic Chemistry, 38, 6106-6113. 

  36. Manceau, A., Lanson, M., and Geoffroy, N. (2007) Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta, 71, 95-128. 

  37. Mark, P. and Nilsson, L. (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105, 9954-9960. 

  38. McKenzie, R.M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493-502. 

  39. McKeown, D.A. and Post, J.E. (2001) Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. American Mineralogist, 86, 701-713. 

  40. Menard, H.W. and Shipek, C.J. (1958) Surface concentrations of manganese nodules. Nature, 182, 1156. 

  41. Mills, R. (1973) Self-diffusion in normal and heavy water in the range 1-45. deg. Journal of Physical Chemistry, 77, 685-688. 

  42. Muller-Plathe, F. (1994) Permeation of polymers - A computational approach. Acta Polymerica, 45, 259-293. 

  43. Newton, A.G. and Kwon, K.D. (2018) Molecular simulations of hydrated phyllomanganates. Geochimica et Cosmochimica Acta, 235, 208-223. 

  44. Nose, S. (1991) Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46. 

  45. Ohtaki, H. and Radnai, T. (1993) Structure and dynamics of hydrated ions. Chemical Reviews, 93, 1157-1204. 

  46. Ostwald, J. (1986) Some observations on the chemical composition of todorokite. Mineralogical Magazine, 50, 336-340. 

  47. Outram, J.G., Couperthwaite, S.J., and Millar, G.J. (2018) Enhanced removal of high Mn(II) and minor heavy metals from acid mine drainage using tunnelled manganese oxides. Journal of Environmental Chemical Engineering, 6, 3249-3261. 

  48. Plimpton, S.J. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19. 

  49. Post, J.E. and Bish, D.L. (1988) Rietveld refinement of the todorokite structure. American Mineralogist, 73, 861-869. 

  50. Post, J.E., Heaney, P.J., and Hanson, J. (2003) Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88, 142-150. 

  51. Riddick, J.A., Bunger, W.B., and Sakano, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification. John Wiley and Sons, New York, 1344p. 

  52. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327-341. 

  53. Shen, Y.F., Suib, S.L., and O'Young, C.L. (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. Journal of the American Chemical Society, 116, 11020-11029. 

  54. Shen, Y.F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I., and O'young, C.L. (1993) Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 260, 511-515. 

  55. Soper, A.K., and Phillips, M.G. (1986) A new determination of the structure of water at $25^{\circ}C$ . Chemical Physics, 107, 47-60. 

  56. Svishchev, I.M. and Kusalik, P.G. (1994) Dynamics in liquid $H_2O$ , $D_2O$ , and $T_2O$ : A comparative simulation study. Journal of Physical Chemistry, 98, 728-733. 

  57. Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., and Soma, M. (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environmental Science and Technology, 38, 6618-6624. 

  58. Tian, Z.R., Xia, G., Luo, J., Suib, S.L., and Navrotsky, A. (2000) Effects of water, cations, and structure on energetics of layer and framework phases, NaxMgy $MnO_2{\cdot}nH_2O$ . Journal of Physical Chemistry B, 104, 5035-5039. 

  59. Toner, B., Manceau, A., Webb, S.M., and Sposito, G. (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 70, 27-43. 

  60. van der Spoel, D., van Maaren, P.J., and Berendsen, H.J. (1998) A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108, 10220-10230. 

  61. Verlet, L. (1967) Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159, 98-103. 

  62. Webb, S.M., Fuller, C.C., Tebo, B.M., and Bargar, J.R. (2006) Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering. Environmental Science and Technology, 40, 771-777. 

  63. Whitney, P.R. (1975) Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. Journal of Geochemical Exploration, 4, 251-263. 

  64. Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K., and Sasaki, K. (2017) Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로