$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고도에 따른 한라산 구상나무와 주목의 외생균근균 다양성 비교
Ectomycorrhizal Fungal Diversity on Abies korea and Taxus cuspidata at Two Altitudes in Mt. Halla 원문보기

한국균학회지 = The Korean journal of mycology, v.47 no.3, 2019년, pp.199 - 208  

이지은 (한국교원대학교 생물교육과) ,  엄안흠 (한국교원대학교 생물교육과)

초록
AI-Helper 아이콘AI-Helper

한라산 상부와 하부에 서식하는 구상나무와 주목의 뿌리에서 각각 외생균근균의 군집 구조를 분석하였다. 형태적 특징과 분자적 분석을 통해 구상나무에서는 하부에서 6속 8종, 상부에서 7속 10종의 외생균근균을 확인하였다. 주목에서는 하부에서 4속 8종, 상부에서 6속 10종의 외생균근균을 확인하였다. 외생균근균의 종 다양성 지수, 종 균등도, 종 수는 숙주식물과 관계없이 상부에서 높게 나타난 반면, 균투 수는 하부에서 높게 나타났다. 하부와 상부에서 구상나무와 주목 뿌리의 외생균근균 군집 간의 유사도를 분석한 결과, 고도에 관계없이 구상나무의 뿌리에서 발견된 외생균근균 군집 간의 유사도가 주목 뿌리의 외생균근균 군집 간 유사도나 구상나무 뿌리의 외생균근균 군집과 주목의 뿌리 외생균근균 군집 간의 유사도에 비해 더 높게 나타났다. 이는 구상나무가 주목과는 다른 특이한 외생균근균 군집 구조를 이루고 있으며, 기온 상승으로 멸종 위기에 처한 구상나무의 보전과 자생지 관리에 도움을 줄 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the community structures of the ectomycorrhizal (ECM) fungi in the roots of Abies koreana and Taxus cuspidata were investigated at different altitudes of Mt. Halla. We identified the collected ECM root tips based on morphological characteristics and phylogenetic analysis through seque...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 기후변화로 인해 멸종 위기에 처한 구상나무와 상대적으로 기후변화의 영향을 적게 받은 주목의 외생균근균 군집을 비교하기 위한 기초 연구의 일환으로 서로 다른 고도에서 서식하는 구상나무와 주목 뿌리의 외생균근균 군집 및 다양성을 확인하였다. 향후 이 연구를 토대로 외생균근균을 활용한 구상나무의 현지 내 보전 (in-situ conservation) 과 관리를 위한 기초 자료를 마련하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (43)

  1. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol 2010;186:281-5. 

  2. Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM. Energy, water, and broad-scale geographic patterns of species richness. Ecology 2003;84:3105-17. 

  3. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003;421:37. 

  4. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L. Extinction risk from climate change. Nature 2004;427:145. 

  5. Grytnes J, McCain CM. Elevational trends in biodiversity. Encyclopedia of Biodiversity 2007;2:1-8. 

  6. Lomolino MV, Riddle BR, Brown JH, Brown JH. Biogeography. MA: Sinauer Associates Sunderland; 2006. 

  7. Kong WS. Biogeography of Native Korean Pinaceae. J Geol Soc Korea 2006;41:73-93. 

  8. Korea National Arboretum. Forest of Korea(I): Conservation of Korean fir (Abies koreana) in a changing environment. Sumeunkil Pub. Co., Korea; 2014. 

  9. Kong WS, Kim KO, Lee SG, Park HN, Cho SH. Distribution of high mountain plants and species vulnerability against climate change. J Environ Impact Assess 2014;23:119-36. 

  10. Kim YS, Chang CS, Kim CS, Gardner M. Abies koreana. The IUCN Red List of Threatened Species 2011; e.T31244A9618913. 

  11. Cho MG, Chung JM, Jung HR, Kang MY, Moon HS. Vegetation Structure of Taxus cuspidata Communities in Subalpine. J Agric & Life Sci 2012;46:1-10. 

  12. Smith SE, Read DJ. Mycorrhizal symbiosis: Academic Press; 2010. 

  13. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Nati Acad Sci USA 2008;105:11505-11. 

  14. Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr 2011;38:595-603. 

  15. Lilleskov EA, Parrent JL. Can we develop general predictive models of mycorrhizal fungal community-environment relationships? New Phytol 2007;174:250-6. 

  16. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-40. 

  17. Kennedy P. Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol 2010;187:895-910. 

  18. Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AF. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 2006;170:873-84. 

  19. Andrew C, Lilleskov EA. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric $CO_{2}$ and $O_{3}$ . Ecol Lett 2009;12:813-22. 

  20. Tedersoo L, Nara K. General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 2010;185:351-4. 

  21. Miyamoto Y, Nakano T, Hattori M, Nara K. The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan. ISME J 2014;8:1739. 

  22. Koo K, Park W, Kong W. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: effects of climate change on the growths. Korean J Ecol 2001;24:281-8. 

  23. Woo SY. Forest decline of the world: A linkage with air pollution and global warming. Afr J Biotechnol 2009;8:7409-14. 

  24. Kim JB, Kim ES, Lim JH. Topographic and meteorological characteristics of Pinus densiflora dieback areas in Sogwang-ri, Uljin. Korean J Agric For Meteorol 2017;19:10-8. 

  25. Taylor D, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 1999;8:1837-50. 

  26. Agerer R. Colour atlas of ectomycorrhizae: Einhorn-Verlag Eduard Dietenberger GmbH; 1997. 

  27. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. 

  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. 

  29. Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N. Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 2005;165:305-16. 

  30. Obase K, Lee JK, Lee SY, Chun KW. Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests in the eastern region of Korea. Mycoscience 2011;52:383-91. 

  31. Dahlberg A, Jonsson L, Nylund J-E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 1997;75:1323-35. 

  32. Gardes M, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot 1996;74:1572-83. 

  33. Raidl S, Muller W. Tomentella ferruginea (Pers.) Pat.+ Fagus sylvatica L. Descr Ectomyc 1996;1:161-6. 

  34. Taylor DL, Bruns TD. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 1997;94:4510-5. 

  35. Kernaghan G, Currah R, Bayer R. Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot 1997;75:1843-50. 

  36. Weiss M, Waller F, Zuccaro A, Selosse MA. Sebacinales-one thousand and one interactions with land plants. New Phytol 2016;211:20-40. 

  37. Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Hoiland K, Eidesen PB. Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 2014;23:649-59. 

  38. Ryberg M, Larsson E, Molau U. Ectomycorrhizal diversity on Dryas octopetala and Salix reticulata in an alpine cliff ecosystem. Arct Antarct Alp Res 2009;41:506-14. 

  39. Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 2012;193:465-73. 

  40. Jarvis SG, Woodward S, Taylor AF. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol 2015;206:1145-55. 

  41. Ahn US, Kim DS, Yun YS, Ko SH, Kim KS, Cho IS. The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes. Korean J Agric 2019;21:1-28. 

  42. Lim JH, Woo SY, Kwon MJ, Chun JH, Shin JH. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. J Korean For Soc 2006;95;705-10. 

  43. Gardes M, Dahlberg A. Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 1996;133:147-57. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로