$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -
The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - 원문보기

한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.21 no.1, 2019년, pp.1 - 28  

안웅산 (제주특별자치도 세계유산본부) ,  김대신 (제주특별자치도 세계유산본부) ,  윤영석 (제주특별자치도 세계유산본부) ,  고석형 (제주특별자치도 세계유산본부) ,  김권수 (제주특별자치도 세계유산본부) ,  조인숙 (제주특별자치도 세계유산본부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 한라산 사방향에 분포하는 구상나무 자생지 중 9개 조사구에 대하여 구상나무를 생목과 사목으로 구분하여 도면화하고, 그 밀도와 고사율을 분석하였다. 분석 결과, 구상나무는 조사구 내의 위치에 따라 밀도 및 고사율에 있어 상당한 불균질성을 보였다. 이는 위치에 따라 변화하는 특정 인자가 구상나무 고사를 발생시킬 것이라는 추정을 가능케 한다. 본 연구에서는 구상나무 밀도 및 고사율을 토대로 고도, 지형경사, 수계망, 일사량과 경사향 등의 지형적 요인과 구상나무 고사현상과의 관련성을 살펴보았다. 구상나무는 고도가 증가함에 따라 밀도가 증가하였으며, 고사율 또한 증가하였다. 지형경사와 고사율 사이에는 음의 상관관계가 인지되었으며, 수계망이 미약하게 발달한 완만한 곳에서 고사율이 높게 나타났다. 그리고 경사향에 따라 고사율이 크게 변화하는 것이 인지되었으며, 생목이 우세한 영역이 사목이 우세한 영역에 비해 평균 일사량이 많게 나타났다. 전반적으로 한라산 구상나무는 상대적으로 지형경사가 완만하고, 일사량이 적은 곳에서 많이 고사하는 것으로 나타났다. 지형경사가 완만할수록 상대적으로 토양수분 함량이 많고, 일사량이 적을수록 증발량이 적어져 토양수분 함량이 많다는 기존 연구결과를 고려하면, 토양수분 과다가 한라산 구상나무 고사의 원인으로 추정된다. 이는 근래의 한반도 및 제주 지역에서 나타나는 강수량 증가, 증발량 감소, 일조시간 감소 등의 일련의 기후변화 현상, 한라산 고도 증가에 따른 강수량 증가와 함께 나타나는 고사율 증가현상, 한라산 아고산지대에서의 식생변화 등의 증거들에 의해 뒷받침된다. 이번 연구에서 고도 및 지역에 따라 인지되는 구상나무 밀도와 고사율의 변화양상은 향후 구상나무 쇠퇴현상에 대한 수치 모델링 연구에 있어 공간변수로 활용될 수 있을 것으로 기대한다. 뿐만 아니라, 정사항공영상을 활용하는 개체단위의 수목분포 조사 방법은 향후 장기적 식생변화 연구에 있어 수치적 모니터링 기법으로 널리 활용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed consid...

주제어

표/그림 (25)

질의응답

핵심어 질문 논문에서 추출한 답변
구상나무 쇠퇴원인으로 무엇이 제시 되었는가? 특히 한라산은 세계 유일의 구상나무 순림 분포지로, 일찍이 1980년대부터 구상나무 쇠퇴의 원인을 밝히기 위한 다양한 연구들이 진행되어 왔다. 구상나무 쇠퇴원인으로는 태풍과 봄 가뭄(Kang, 1984; Kim, 1994; Park and Seo, 1999), 각 개체에 대한 미기후 요인(Lee and Cho, 1993), 건조한 동절기 기후로 인한 수분스트레스 증가(Lim et al., 2006) 혹은 그로 인한 수분수지 불균형(Koo et al., 2001), 강풍에 따른 뿌리 흔들림, 집중강수에 의한 토양유실, 겨울철 폭설 등의 복합적 작용(Koh et al., 2015; Song et al., 2016) 등 다양한 요인들이 제시되어 왔다. 기존 연구들은 공통적으로 기후변화가 구상나무 쇠퇴의 주요원인으로 분석하고 있지만, 기후변화에 의해 어떠한 요인이 구상나무의 생장 혹은 생존에 영향을 주는가에 대한 구체적인 설명은 결여되어 있다.
구상나무는 어디에 위치하는가? 구상나무는 한라산, 지리산, 덕유산, 가야산 등 한반도 남부지역의 해발 1,000m 이상의 고지대에 분포하고 있으나, 그 분포면적이 지속적으로 감소하고 있는 실정이다. 특히 한라산은 세계 유일의 구상나무 순림 분포지로, 일찍이 1980년대부터 구상나무 쇠퇴의 원인을 밝히기 위한 다양한 연구들이 진행되어 왔다.
구상나무의 고사현상에 영향을 주는 요인은 무엇인가? 본 연구에서는 구상나무 밀도 및 고사율을 토대로 고도, 지형경사, 수계망, 일사량과 경사향 등의 지형적 요인과 구상나무 고사현상과의 관련성을 살펴보았다. 구상나무는 고도가 증가함에 따라 밀도가 증가하였으며, 고사율 또한 증가하였다. 지형경사와 고사율 사이에는 음의 상관관계가 인지되었으며, 수계망이 미약하게 발달한 완만한 곳에서 고사율이 높게 나타났다. 그리고 경사향에 따라 고사율이 크게 변화하는 것이 인지되었으며, 생목이 우세한 영역이 사목이 우세한 영역에 비해 평균 일사량이 많게 나타났다. 전반적으로 한라산 구상나무는 상대적으로 지형경사가 완만하고, 일사량이 적은 곳에서 많이 고사하는 것으로 나타났다. 지형경사가 완만할수록 상대적으로 토양수분 함량이 많고, 일사량이 적을수록 증발량이 적어져 토양수분 함량이 많다는 기존 연구결과를 고려하면, 토양수분 과다가 한라산 구상나무 고사의 원인으로 추정된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci, and N. Cobb, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest ecology and management 259(4), 660-684. 

  2. Allen, C. D., and D. D. Breshears, 2007: Climate-induced forest dieback as an emergent global phenomenon. Eos, Transactions American Geophysical Union 88(47), 504-504. 

  3. Anderegg, W. R., T. Klein, M. Bartlett, L. Sack, A. F. Pellegrini, B. Choat, and S. Jansen, 2016: Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences 113(18), 5024-5029. 

  4. Anenkhonov, O. A., A. Y. Korolyuk, D. V. Sandanov, H. Liu, A. A. Zverev, and D. Guo, 2015: Soil-moisture conditions indicated by field-layer plants help identify vulnerable forests in the forest-steppe of semi-arid Southern Siberia. Ecological indicators 57, 196-207. 

  5. Bennie, J., B. Huntley, A. Wiltshire, M. O. Hill, and R. Baxter, 2008: Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological modelling 216(1), 47-59. 

  6. Breshears, D. D., J. W. Nyhan, C. E. Heil, and B. P. Wilcox, 1998: Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159(6), 1010-1017. 

  7. Burnett, B. N., G. A. Meyer, and L. D. McFadden, 2008: Aspect related microclimatic influences on slope forms and processes, northeastern Arizona. Journal of Geophysical Research: Earth Surface, 113(F3). 

  8. Chaneton, E. J., and R. S. Lavado, 1996: Soil nutrients and salinity after long-term grazing exclusion in a flooding Pampa grassland. Rangeland Ecology & Management/Journal of Range Management Archives 49(2), 182-187. 

  9. Cho, H.-K., S.-G. Hong, and J.-J. Kim, 2001: Studies on growth and biomass production of Abies Koreana seedlings under different relative light intensity. Journal of Korea forestry energy 20(2), 58-68. (in Korean with English abstract) 

  10. Choi, K. J., H. S. Lee, and Y. W. Kwon, 1995: Physiological response of soybean under excessive soil water stress during vegetative growth period. Korean Journal of Crop Science 40(5), 549-599. (in Korean with English abstract) 

  11. Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water resources research 20(6), 682-690. 

  12. Craine, J. M., T. W. Ocheltree, J. B. Nippert, E. G. Towne, A. M. Skibbe, S. W. Kembel, and J. E. Fargione, 2013: Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change 3(1), 63pp. 

  13. D'Amore, D., and P. E. Hennon, 2006: Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar decline. Global change biology 12(3), 524-545. 

  14. D'Amore, D. V., P. E. Hennon, P. G. Schaberg, and G. J. Hawley, 2009: Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: a new hypothesis. Forest Ecology and Management 258(10), 2261-2268. 

  15. Fensham, R. J., R. J. Fairfax, and D. P. Ward, 2009: Drought induced tree death in savanna. Global Change Biology 15(2), 380-387. 

  16. Frelich, L. E., and P. B. Reich, 2010: Will environmental changes reinforce the impact of global warming on the prairie forest border of central North America? Frontiers in Ecology and the Environment 8(7), 371-378. 

  17. Hallasan Research Institute, 2012: The natural resources research in Mt. Hallasan. DesignYeollim, 586pp. (in Korean) 

  18. Hennon, P. E., D.V. D'Amore, D.T. Wittwer, and J. P. Caouette, 2008: Yellow-cedar decline: conserving a climate-sensitive tree species as Alaska warms. United States Department of Agriculture Forest Service General Technical Report PNW 733, 233-245. 

  19. Hennon, P. E., D. V. D'Amore, P. G. Schaberg, D. T. Wittwer, and C. S. Shanley, 2012: Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest. BioScience 62(2), 147-158. 

  20. Hennon, P. E., E. M. Hansen, and C. G. Shaw III, 1990: Dynamics of decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Canadian Journal of Botany 68(3), 651-662. 

  21. Isard, S. A., 1986: Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, USA. Arctic and Alpine Research 18(1), 83-96. 

  22. Jeong, G. Y., A. Han, M. Cho, M. Park, T. Kwak, and U. S. Ahn, 2015: Mineralogical and geochemical study on the origin of paleosols in Jeju Island. 2015 Fall Joint Conference of Geological Science of Korea, Jeju, Korea, The Geological society of Korea, 68pp. (in Korean) 

  23. Kang, S. J.,1984: Regeneration process of subalpine coniferous forest in Mt. Jiri. Journal of Ecology and Environment 7(4), 185-193. (in Korean with English abstract) 

  24. Kim, E. S., 1994: Decline of tree growth and the changes of environmental factors on high altitude mountains. The Korea Science and Engineering Foundation Research Report KOSEF921-1500-081-2, 89pp. (in Korean with English abstract) 

  25. Kim, J.-K., J.-G. Koh, H.-T. Yim, and D.-S. Kim, 2017: Changes of spatial distribution of Korean fir forest in Mt. Hallasan for the past 10 years (2006, 2015). Korean Journal of Environment and Ecology 31(6), 549-556. (in Korean with English abstract) 

  26. KNA(Korean National Arboretum), 2015: Ecology of woody plants in South Korea(I) Conifers. Sumunkil, 216pp. (in Korean) 

  27. Koh, J.-G., D.-S. Kim, J.-G. Kim, and Y.-J. Ko, 2015: Growth dynamics of Korean Fir in Mt. Hallsan. Hallasan Research Report 14, 9-25. (in Korean with English summary) 

  28. Koo, K.-A., W.-K. Park, and W.-S. Kong, 2001: Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea: Effects of Climate Change on the Growths. The Korean journal of ecology 24(5), 281-288. (in Korean with English abstract) 

  29. Korea National Park Research Institute, 2018: Monitoring of ecosystems related to climate change in National Park, Korea (2018), 351pp. (in Korean) 

  30. Lee, C.-S., and H.-J. Cho, 1993: Structure and dynamics of Abies koreana Wilson Community in Mt. Gaya. The Korean journal of ecology 16(1), 75-91. (in Korean with English abstract) 

  31. Lim, J.-H., S.-Y. Woo, M. J. Kwon, J. H. Chun, and J. H. Shin, 2006: Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean Fir in Mt. Halla. Journal of Korean Forestry Society 95(6), 705-710. (in Korean with English abstract) 

  32. Liu, H., S. He, O. A. Anenkhonov, G. Hu, D. V. Sandanov, and N. K. Badmaeva, 2012: Topography-controlled soil water content and the coexistence of forest and steppe in Northern China. Physical Geography 33(6), 561-573. 

  33. Moeslund, J. E., L. Arge, P. K. Bocher, T. Dalgaard, M. V. Odgaard, B. Nygaard, and J. C. Svenning, 2013: Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere 4(7), 1-26. 

  34. Nicholson, S. E., and T. J. Farrar, 1994: The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sensing of Environment 50(2), 107-120. 

  35. NIMS (National Institute of Meteorological Sciences), 2010: Understanding of climate change IV, 63pp. 

  36. NIMS (National Institute of Meteorological Sciences), 2018: Climate change in Korea over the recent 100 years, 31pp. 

  37. Okland, R. H., K. Rydgren, and T. Okland, 2008: Species richness in boreal swamp forests of SE Norway: the role of surface microtopography. Journal of Vegetation Science 19(1), 67-74. 

  38. Park, H.-C., J.-H. Lee, G.-G. Lee, and G.-J. Um, 2015: Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir. Journal of Environmental Impact Assessment 24(3), 260-277. (in Korean with English abstract) 

  39. Park, J. K., and J. H. Park, 2013: Estimation of solar radiation distribution considering the topographic conditions at Jeju Island. Journal of the Korean Society of Agricultural Engineers 55(1), 39-48. (in Korean with English abstract) 

  40. Park, K. H., D. L. Cho, Y. B. Kim, J.-C. Kim, B.-W. Cho, Y. N. Jang, B.-J. Lee, S.-R. Lee, B. K. Son, H. Y. Cheon, H. Y. Lee, and Y. U. Kim, 2000: Geologic report of the Seogwipo-Hahyori Sheet (1:50,000). Jeju Provincial Government, 163pp. (in Korean with English abstract) 

  41. Park, W.-K., and J.-W. Seo, 1999: A Dendroclimatic Analysis on Abies koreana in Cheonwang-bong Area of Mt. Chiri, Korea. The Korean journal of quaternary research 13(1), 25-33. (in Korean with English abstract) 

  42. Parolin, P., C. Lucas, M. T. F. Piedade, and F. Wittmann, 2009: Drought responses of floodtolerant trees in Amazonian floodplains. Annals of botany 105(1), 129-139. 

  43. Qiu, Y., B. Fu, J. Wang, and L. Chen, 2001: Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology 240(3), 243-263. 

  44. Raulings, E. J., K. A. Y. Morris, M. C. Roache, and P. I. Boon, 2010: The importance of water regimes operating at small spatial scales for the diversity and structure of wetland vegetation. Freshwater Biology 55(3), 701-715. 

  45. Raz-Yaseef, N., E. Rotenberg, and D. Yakir, 2010: Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agricultural and Forest Meteorology 150(3), 454-462. 

  46. Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environmental Change 12(3), 197-202. 

  47. Schaap, M. G., F. J. Leij, and M. T. Van Genuchten, 1998: Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal 62(4), 847-855. 

  48. Silvertown, J., Y. Araya, and D. Gowing, 2015: Hydrological niches in terrestrial plant communities: a review. Journal of Ecology 103(1), 93-108. 

  49. Song, K. M., J. Kim, Y. J. Kang, H. S. Choi, S. C. Jung, S. Y. Lee, J. H. Lee, J. G. Koh, J. G. Kim, K. H. Lee, Y. P. Hong, J. H. Lim, and C. S. Kim, 2016: Korea Fir Hallasan Mountain, why are they dying? National Institute of Forest Service, 136pp. (in Korean with English abstract). 

  50. West, A. G., T. E. Dawson, E. C. February, G. F. Midgley, W. J. Bond, and T. L. Aston, 2012: Diverse functional responses to drought in a Mediterranean type shrubland in South Africa. New Phytologist 195(2), 396-407. 

  51. Western, A. W., R. B. Grayson, G. Bloschl, G. R. Willgoose, and T. A. McMahon, 1999: Observed spatial organization of soil moisture and its relation to terrain indices. Water resources research 35(3), 797-810. 

  52. Wilson, J. P., and J. C. Gallant, 2000: Terrain analysis: principles and applications. Wiley, New York, USA. 

  53. Xiang, X., X. Wu, X. Chen, Q. Song, and X. Xue, 2017: Integrating topography and soil properties for spatial soil moisture storage modeling. Water 9(9), 647pp. 

  54. Zaidi, P. H., S. Rafique, and N. N. Singh, 2003: Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. European Journal of Agronomy 19(3), 383-399. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로