$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유리지방산으로 지방축적을 유도한 HepG2 cells 대한 꾸지뽕 열매 추출물의 개선 효과
Cudrania tricuspidata Fruit Extract Ameliorates Free Fatty Acid-induced Lipid Accumulation in HepG2 Cells 원문보기

생명과학회지 = Journal of life science, v.29 no.10, 2019년, pp.1144 - 1151  

이효정 (광주대학교 식품생명과학과) ,  박세은 (광주대학교 식품생명과학과) ,  김승 (광주대학교 식품생명과학과)

초록
AI-Helper 아이콘AI-Helper

비알코올성 지방간은 만성 간 질환으로 비만, 고혈압, 비만, 이상지질혈증과 같은 다양한 대사증후군과 연관되어 있다. 꾸지뽕은 한국을 포함한 동아시아 국가에서 다양한 질병에 사용되는 약용작물로 본 연구에서는 유리지방산에 의해 지방축적이 유도된 세포 내에서 꾸지뽕 열매 추출물의 비알코올성 지방간 개선 효과와 기전을 규명하였다. 꾸지뽕 열매 추출물은 지방 축적 및 중성지방, 콜레스테롤 생성 및 HMG 환원효소의 활성을 억제하였다. 또한 지방생성과 관련된 유전자인 SREBP-1, FAS, SCD-1, SREBP-2의 발현을 억제 하였으며 AMPK의 활성화를 억제하였다. 본 연구결과를 통해서 꾸지뽕 열매 추출물이 유리지방산에 의해 유도된 지방 축적을 억제하고 AMPK/SREBP 신호전달 경로를 조절하여 억제 활성을 나타냄을 밝히며, 비알코올성 지방간의 예방 및 개선을 위한 천연물 소재로 활용될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with various metabolic syndromes, such as obesity, dyslipidemia, hypertension, and diabetes. Cudrania tricuspidata is a medicinal plant distributed widely in Asia and has been used in clinical practice to treat various d...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 유리 지방산에 의해 지방 축적이 유도된 HepG2 세포를 이용하여 꾸지뽕 열매 추출물의 억제 효능 및 그 작용기전에 대해 확인하였으며, NAFLD에 대한 기능성 소재로 활용 가능성을 확인하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
비알코올성 지방간 질환(Non-Alcoholic Fatty Liver Disease, NAFLD)은 무엇인가? 비알코올성 지방간 질환(Non-Alcoholic Fatty Liver Disease, NAFLD)은 간 조직 내 비정상적으로 지방이 과다하게 축적되어 있는 상태로 만성 간 질환 중 가장 흔한 질환이다[10, 35]. 체내 유리지방산은 간으로 유입되어 중성지방 합성의 원료가 되는데 과도한 탄수화물을 포함하는 식이는 유리 지방산의 생성을 급격하게 증가시켜 간에서의 유리 지방산 흡수를 증가시키고 탄수화물 대사로부터 중성지방의 생합성을 증가시켜 간에서의 중성 지방 합성량이 분해량을 초과하며 NAFLD이 발생하게 된다[5, 28].
NAFLD 치료제의 단점은? NAFLD의 예방과 치료를 위해 체중조절, 운동, 식이요법 및 약물이 사용되고 있으며[6] NAFLD 치료제로 항비만제(orlistat), 지질 강하제(statins, fibrates), 혈당강하제(metformin, thiazolidinediones), 항산화제(vitamin E)가 사용되고 있다[2]. 이들 치료제들은 간에 특이적으로 작용하지 않으며 장기간 적용 시에 부작용 발생이 증가한다는 단점이 있어 천연물을 이용하여 안전하고 부작용을 최소화한 효과적인 소재의 개발이 요구되고 있으며, 최근 연구를 통해서 차나무, 치커리, 블루베리, 뽕나무 및 나도공단풀 등이 간 조직 내 지방 축적을 억제시킨다는 연구가 보고되어 있다[3, 4, 24, 25, 30, 41].
꾸지뽕나무(Cudrania tricuspidata)의 용도는 무엇인가? 꾸지뽕나무(Cudrania tricuspidata)는 뽕나무과에 속하는 낙엽교목으로 한국을 포함한 동북아시아에 분포하며 예로부터 줄기는 약재로 잎과 열매는 식용으로 이용되고 있다[9, 22]. 다수의 연구들을 통해서 꾸지뽕 잎, 줄기, 열매는 항산화, 항염증, 항비만 및 간보호와 같은 다양한 생리학적 효과가 보고되어 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. Angeles, T. S. and Hudkins, R. L. 2016. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors. Expert. Opin. Drug Discov. 11, 1187-1199. 

  2. Beaton, M. D. 2012. Current treatment options for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Can. J. Gastroenterol. 26, 353-357. 

  3. Bahmani, M., Eftekhari, Z., Saki, K., Fazeli-Moghadam, E., Jelodari, M. and Rafieian-Kopaei, M. 2016. Obesity phytotherapy: Review of native herbs used in traditional medicine for obesity. J. Evid. Based Complementary Altern. Med. 21, 228-234. 

  4. Bahmani, M., Mirhoseini, M., Shirzad, H., Sedighi, M., Shahinfard, N. and Rafieian-Kopaei, M. 2015. A review on promising natural agents effective on hyperlipidemia. J. Evid. Based Complement. Altern. Med. 20, 228-238. 

  5. Birkenfeld, A. L. and Shulman, G. I. 2014. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59, 713-723. 

  6. Brouwers, B., Hesselink, M. K., Schrauwen, P. and Schrauwen-Hinderling, V. B. 2016. Effects of exercise training on intrahepatic lipid content in humans. Diabetologia 59, 2068-2079. 

  7. Brown, M. S. and Goldstein, J. L. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340. 

  8. Chang, J. J., Hsu, M. J., Huang, H. P., Chung, D. J., Chang, Y. C. and Wang, C. J. 2013. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 61, 6069-6076. 

  9. Choi, S. R., You, D. H., Jang, I., Ahn, M. S., Song, E. J., Seo, S. Y., Choi, M. K., Kim, Y. S., Kim, M. K. and Choi, D. G. 2012. Cytotoxicity of methanol extracts from Cudrania tricuspidata Bureau. Kor. J. Medicinal Crop Sci. 20, 153-158. 

  10. Cohen, J. C., Horton, J. D. and Hobbs, H. H. 2011. Human fatty liver disease: old questions and new insights. Science 332, 1519-1523. 

  11. Hardy, T., Oakley, F., Anstee, Q. M. and Day, C. P. 2016. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451-496. 

  12. Jang, E., Shin, M. H., Kim, K. S., Kim, Y., Na, Y. C., Woo, H. J., Kim, Y., Lee, J. H. and Jang, H. J. 2014. Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC. Complement. Altern. Med. 14, 253. 

  13. Jang, I. M. 2003. Treatise on asian herbal medicines. Haksulpyunsukwan in research institute of natural products of Seoul national university, Seoul, Korea. 

  14. Jeon, J. H. and Park, K. G. 2014. Definition, pathogenesis, and natural progress of non-alcoholic fatty liver disease. J. Kor. Diabetes 15, 65-70. 

  15. Jo, Y. H., Choi, K. M., Liu, Q., Kim, S. B., Ji, H. J., Kim, M., Shin, S. K., Do, S. G., Shin, E., Jung, G., Yoo, H. S., Hwang, B. Y. and Lee, M. K. 2015. Anti-obesity effect of 6,8-Diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients 7, 10480-10490. 

  16. Jo, Y. H., Kim, S. B., Ahn, J. H., Turk, A., Kwon, E. B., Kim, M. O., Hwang, B. Y. and Lee, K. 2019. Xanthones from the stems of Cudrania tricuspidata and their inhibitory effects on pancreatic lipase and fat accumulation. Bioorg. Chem. 92, 103234. 

  17. Jo, Y. H., Kim, S. B., Liu, Q., Do, S. G., Hwang, B. Y. and Lee, M. K. 2017. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS One 12, e0172069. 

  18. Kim, E. Y. and Lee, J. H. 2014. The effect of Alisma orientale extract on free fatty acid-induced lipoapoptosis in HepG2 cells. J. Int. Kor. Med. 35, 184-194. 

  19. Kim, O. K., Jun, W. and Lee, J. 2016. Effect of Cudrania tricuspidata and kaempferol in endoplasmic reticulum Stress-induced inflammation and hepatic insulin resistance in HepG2 Cells. Nutrients 8, 60. 

  20. Kim, O. K., Nam, D. E., Jun, W. and Lee, J. 2015. Cudrania tricuspidata water extract improved obesity-induced hepatic insulin resistance in db/db mice by suppressing ER stress and inflammation. Food Nutr. Res. 59, 29165. 

  21. Kim, Y. S., Lee, Y., Kim, J., Sohn, E., Kim, C. S., Lee, Y. M., Jo, K., Shin, S., Song, Y., Kim, J. H. and Kim, J. S. 2012. Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase in vitro and lipolysis in vivo. Evid. Base Compl. Alternative Med. 2012, 878365. 

  22. Lee, C. B. 1985. Dehanshikmuldogam (A field guide to Korean plants). pp. 285, Hyangmoonsha, Seoul, Korea. 

  23. Lee, S. J., Lee, M. J., Ko, Y. J., Choi, H. R., Jeong, J. T., Choi, K. Y., Cha, J. D., Hwang, S. M., Jung, H. K., Park, J. H. and Lee, T. B. 2013. Effects of extracts of unripe black raspberry and red ginseng on cholesterol synthesis. Kor. J. Food Sci. Technnol. 45, 628-635. 

  24. Lin, C. L., Huang, H. C. and Lin, J. K. 2007. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells, J. Lipid Res. 48, 2334-2343. 

  25. Liu, Y., Wang, D., Zhang, D., Lv, Y., Wei, Y., Wu, W., Zhou, F., Tang, M., Mao, T., Li, M. and Ji, B. 2011. Inhibitory effect of blueberry polyphenolic compounds on oleic acid-induced hepatic steatosis in vitro. J. Agric. Food Chem. 59, 12254-12263. 

  26. Misra, P. 2008. AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin. Ther. Targets 12, 91-100. 

  27. Mohandas, J., Marshall, J. J., Duggin, G. G., Horvath, J. S. and Tiller, D. J. 1984. Differential distribution of glutathionerelated enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 33, 1801-1807. 

  28. Musi, N. 2006. AMP-activated protein kinase and type 2 diabetes. Curr. Med. Chem. 13, 583-589. 

  29. Musso, G., Gambino, R. and Cassader, M. 2009. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 48, 1-26. 

  30. Ou, T. T., Hsu, M. J., Chan, K. C., Huang, C. N., Ho, H. H. and Wang, C. J. 2011. Mulberry extract inhibits oleic acidinduced lipid accumulation via reduction of lipogenesis and promotion of hepatic lipid clearance. J. Sci. Food Agric. 91, 2740-2748. 

  31. Parekh, S. and Anania, F. A. 2007. Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 132, 2191-2207. 

  32. Park, J. K. 2018. Antithrombotic and antiadipogenic effects of Cudrania tricuspidata fruit extract. Ph.D. dissertation, Kyung Hee University, Seoul, Korea. 

  33. Park, M., Yoo, J. H., Lee, Y. S. and Lee, H. J. 2019. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 11, 494. 

  34. Jeon, J. H. and Park, K. G. 2014. Definition, pathogenesis, and natural progress of non-alcoholic fatty liver disease. J. Kor. Diabetes. 15, 65-70. 

  35. Reccia, I., Kumar, J., Akladios, C., Virdis, F., Pai, M., Habib, N. and Spalding, D. 2017. Nonalcoholic fatty liver disease: a sign of systemic disease. Metab. Clin. Exp. 72, 94-108. 

  36. Smith, B. K., Marcinko, K., Desjardins, E. M., Lally, J. S., Ford, R. J. and Steinberg, G. R. 2016. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, 730-740. 

  37. Sun, J. H., Liu, X., Cong L. X., Li, h., Zhang, C. Y., Chen, J. G. and Wang, C. M. 2017. Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice. Lipids Health Dis. 16, 145. 

  38. Thounaojam, M. C., Jadeja, R. N., Dandekar, D. S., Devkar, R. V. and Ramachandran, A. V. 2012. Sida rhomboidea. Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis. Exp. Toxicol. Pathol. 64, 217-224. 

  39. Vuppalanchi, R. and Chalasani, N., 2009. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49, 306-317. 

  40. Wang, Y., Viscarra, J., Kim, S. J. and Sul, H. S. 2015. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678-689. 

  41. Yang, G., Lee, K., Lee, M., Ham, I. and Choi, H. Y. 2012. Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages. BMC Compl. Altern. Med. 12, 250. 

  42. Ziamajidi, N., Khaghani, S., Hassanzadeh, G., Vardasbi, S., Ahmadian, S., Nowrouzi, A., Ghaffari, A. M. and Abdirad, A. 2013. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of $PPAR{\alpha}$ and SREBP-1. Food Chem. Toxicol. 58, 198-209. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로