$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰
Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.28 no.5, 2019년, pp.3 - 18  

(고등기술연구원 융합소재연구센터) ,  김민석 (한국지질자원연구원 광물자원연구본부) ,  이찬기 (고등기술연구원 융합소재연구센터) ,  정경우 (한국지질자원연구원 광물자원연구본부) ,  이재천 (한국지질자원연구원 광물자원연구본부)

초록
AI-Helper 아이콘AI-Helper

청정에너지에 대한 수요가 증가함에 따라 리튬이온배터리의 소비가 꾸준히 늘어날 것으로 예상된다. 따라서 전세계적으로 리튬의 안정적 공급이 중요한 문제가 되고 있다. 저품위 광석, 점토, 해수 그리고 폐리튬이온배터리 등과 같은 다양한 자원으로부터 리튬의 회수를 위한 공정과 기술들이 개발되어져 왔지만, 대부분의 리튬은 간수와 스포듀민 광석으로부터 상업적으로 생산되고 있다. 특히, 휴대폰과 전기자동차(EVs)를 포함한 여러 분야에서 발생하고 있는 사용 후 리튬이온배터리에 대한 재활용 기술들의 상용화는 많은 잠재력을 가지고 있다. 본 고찰은 폐리튬이온배터리에 대하여 새롭게 개발된 리튬 회수 공정과 더불어 광물과 간수를 이용하기 위한 상용공정 및 최신 기술들을 소개한다. 아울러 미래의 리튬 공급이 기술적인 관점에서 논의된다. 저품위 광석으로부터 리튬 회수를 위하여 개발되고 있는 최신공정들은 주로 건식+습식 제련에 기반을 둔 접근방법에 초점을 두고 있으며, 단지 몇몇 방법들만이 안정화 되었다. 리튬이온배터리의 소비(현재 생산되는 리튬의 56%)에 비교하여 리튬의 낮은 재활용율(1% 미만) 때문에 2차 자원의 처리는 굉장한 기회로서 앞을 내다보는 것일 수 있다. 또한 탄소경제, 환경과 에너지에 대한 우려를 생각해 볼 때, 습식제련공정이 이러한 이슈를 해결할 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although va...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • Several companies all over the world are also developing potential alternative/potential com-mercial technologies to recover lithium from mineral resources, as summarized in Fig. 6. Lepidico, Australia, Lithium Australia, and Rio Tinto, Australia are develop-ing processes to recover lithium from Micas, lithium silicate, and Jadarite, respectively. All such development is based on the combination of the available process along with innovations.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Taiebat, M. and Xu, M., 2019 : Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-togrid, and vehicle automation, Journal of Cleaner Production, 230, pp.794-797. 

  2. Richa, K., Babbitt, C. W., Gaustad, G., and Wang, X., 2014 : A future perspective on lithium-ion battery waste flows from electric vehicles, Resources, Conservation and Recycling, 83, pp.63-76. 

  3. Grosjean, C., Miranda, P. H., Perrin, M., and Poggi, P., 2012 : Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable and Sustainable Energy Reviews, 16, pp.1735-1744. 

  4. S wain, B., 2016 : Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, Journal of Chemical Technology & Biotechnology, 91, pp.2549-2562. 

  5. S wain, B., 2017 : Recovery and recycling of lithium: A review, Separation and Purification Technology, 172, pp.388-403. 

  6. Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., and Cleary, J., 2018 : Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review, Resources, 7. 

  7. Mohr, S. H., Mudd, G. M., and Giurco, D., 2012 : Lithium Resources and Production: Critical Assessment and Global Projections, Minerals, 2, pp.65-84. 

  8. Brenner , A., 1963 : Electrodeposition of alloys: principles and practice. Academic Press. 

  9. Hamzaoui, A. H., M'Nif, A., Hammi, H., and Rokbani, R., 2003 : Contribution to the lithium recovery from brine, Desalination, 158, pp.221-224. 

  10. Goonan, T. G., 2012 : Lithium use in batteries: U.S. Geological Survey Circular 1371, U.S. Geological Survey, Reston, Virginia: 2012. 

  11. Lupi, C. and Pasquali, M., 2003 : Electrolytic nickel recovery from lithium-ion batteries, Minerals Engineering, 16, pp.537-542. 

  12. Contestabile, M., Panero, S., and Scrosati, B., 1999 : A laboratory-scale lithium battery recycling process1, Journal of Power Sources, 83, pp.75-78. 

  13. Contestabile, M., Panero, S., and Scrosati, B., 1999 : A laboratory-scale lithium battery recycling process1This work has been presented as an invited talk at the 4th International Battery Recycling Congress, Hamburg, Germany, 1-3 July, 1998.1, Journal of Power Sources, 83, pp.75-78. 

  14. Contestabile, M., Panero, S., and Scrosati, B., 2001 : A laboratory-scale lithium-ion battery recycling process, Journal of Power Sources, 92, pp.65-69. 

  15. Sadoway , D., 1998 : Toward new technologies for the production of lithium, JOM, 50, pp.24-26. 

  16. Bradley, D. and Jaskula, Brian. 2014 : Lithium-For Harnessing Renewable Energy: U.S. Geological Survey Fact Sheet 2014-3035, U.S. Geological Survey 

  17. USGS. 2019 : U.S. Geological Survey, 2019, Mineral commodity summaries 2019: U. S. Geological Survey, U.S. Department of the Interior, U.S. Geological Survey, U.S. Geological Survey, Reston, Virginia 

  18. Bohlsen, M., 2016 : The Lithium Boom - An Analysis Of Future Demand Vs. Supply. http://seekingalpha.com/article/3984654-lithium-boom-analysis-future-demandvs-supply 

  19. www.statista.com. 2019. Projection of total worldwide lithium demand from 2017 to 2025. https://www.statista.com/statistics/452025/projected-totaldemand-for-lithium-globally/ 

  20. Li, J., Du, Z., Ruther, R. E., AN, S. J., David, L. A., et al., 2017 : Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries, JOM, 69, pp.1484-1496. 

  21. AGENCY , I. E. 2016 : Global EV Outlook 2016 Beyond one million electric cars. https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf 

  22. Ulvestad, A., 2018 : A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies. https://arxiv.org/abs/1803.04317 

  23. Fortuna, C., 2018 : Batteries, Not The Model 3, Are The Real Keys To Tesla's Future Success. https://cleantechnica.com/2018/02/12/batteries-not-model-3-real-keysteslas-future-success/ 

  24. Olivetti, E. A., Ceder, G., Gaustad, G. G., and Fu, X., 2017 : Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, 1, pp.229-243. 

  25. Bo Normark, A. F., 2014 : How can batteries support the EU electricity network? 

  26. http://www.marketwatch.com. 2016. Lithium-ion Battery Market i s Projected t o Reach US $ 77. 42 bn in 2 024; Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016 - 2024: TMR. http://www.marketwatch.com/story/lithium-ion-battery-market-is-projected-to-reach-us-7742-bn-in-2024-global-industryanalysis-size-share-growth-trends-and-forecast-2016---2024-tmr-2016-09-19 

  27. Jaskula, B. W., 2017 : U.S. Geological Survey, Mineral Commodity Summaries, January 2017. U.S. Geological Survey, Reston, Virginia: U.S. Geological Survey, U.S. department of the Interior. pp.100-101. 

  28. Gagno, G., 2016 : Lithium on the rise. http://www.rockstone-research.com/index.php/en /news/816-Lithium-onthe-rise 

  29. Swain, B., 2018 : Cost effective recovery of lithium from lithium ion battery by reverse osmosis and precipitation: a perspective, Journal of Chemical Technology & Biotechnology, 93, pp.311-319. 

  30. Schulz, K. J., DeYoung, J. H., Seal, R. R., and Bradley, D. C., 2017 : Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply. 

  31. Graedel, T. E., 2015 : Recycling rates of metals, a status report. http://www.unep.org/resourcepanel/Portals/24102/PDFs/Metals_Recycling_Rates_110412-1.pdf 

  32. BGS, N., 2016 : Commodit Profile : Lithium profile. https://www.bgs.ac.uk/downloads/start.cfm?id3100 

  33. Tran, T. and Luong, V. T., 2015 : Chapter 3 - Lithium Production Processes. In Lithium Process Chemistry, ed. A Chagnes, J Swiatowska:81-124. Amsterdam: Elsevier. Number of 81-124 pp. 

  34. Talens Peiro, L., Villalba Mendez, G., and Ayres, R. U., 2013 : Lithium: Sources, Production, Uses, and Recovery Outlook, JOM, 65, pp.986-996. 

  35. F. Margarido, N. V., F. Durao, C. Guimaraes, and C. A. Nogueira, 2014 : Minero-metallurgical processes for lithium recovery from pegmatitic ores, Comunicacoes Geologicas, 101, pp.795-798. 

  36. Mast, E., 1989 : Lithium Production from Spodumene. McGill University, Montreal Canada. 

  37. F. Margarido, N. Vieceli, F. Durao, C. Guimaraes, and Nogueira, C. A., 2014 : Minero-metallurgical processes for lithium recovery from pegmatitic ores Comunicacoes Geologicas 101, pp.795-798. 

  38. Peltosaari, O., Tanskanen, P., Heikkinen, E.-P., and Fabritius, T., 2015 : ${\alpha}{\rightarrow}{\gamma}{\rightarrow}{\beta}$ -phase transformation of spodumene with hybrid microwave and conventional furnaces, Minerals Engineering, 82, pp.54-60. 

  39. Choubey, P. K., Kim, M.-s., Srivastava, R. R., Lee, J.-c., and Lee, J.-Y., 2016 : Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources, Minerals Engineering, 89, pp.119-137. 

  40. An, J. W., Kang, D. J., Tran, K. T., Kim, M. J., Lim, T., and Tran, T., 2012 : Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117-118, pp.64-70. 

  41. De-Leon, S., 2018 : Lithium Ion Battery Recycling Market 2018. 

  42. Ellis, T. W. and Mirza, A. H., 2016 : Battery Recycling: defining the market and identifying the technology required to keep high value materials in the economy and out of the waste dump. http://www.nist.gov/tip/wp/pswp/upload/245_battery_recycling_defining_the_market.pdf 

  43. 2014. EUROPEAN LI-ION BATTERY ADVANCED MANUFACTURING FOR ELECTRIC VEHICLES. https://elibama.files.wordpress.com/2014/10/v-d-batteries-recycling1.pdf 

  44. Kim, D.-S., Sohn, J.-S., Lee, C.-K., Lee, J.-H., Han, K.-S., and Lee, Y.-I., 2004 : Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, Journal of Power Sources, 132, pp.145-149. 

  45. Trager, T., Friedrich, B., and Weyhe, R., 2015 : Recovery Concept of Value Metals from Automotive Lithium-Ion Batteries, Chemie Ingenieur Technik, 87, pp.1550-1557. 

  46. Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M., and Inoue, K., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, pp.259-271. 

  47. Nguyen, V. T. L., Jae-Chun Jeong, Jinki Kim, Byung-Su Pandey, B. D., 2015 : The Separation and Recovery of Nickel and Lithium from the Sulfate Leach Liquor of Spent Lithium Ion Batteries using PC-88A, Korean Chemical Engineering Research, 53, pp.137-144. 

  48. C. K. Lee, J. S. S., and K. I. Rhee, 2014 : Chemical extractin of lithium from $LiCoO_2$ using oxalic acid. Proc. Global Symposium on recycling, waste treatment and clean technology, REWAS 2004, Madrid, Spain, 1. 

  49. Nexant-Inc., 2018 : Technoeconomics-Energy & Chemicals (TECH) TECH 2018S11 Lithium Extraction Technologies. https://www.nexantsubscriptions.com/file/133644/download?tokendSnzZcCL 

  50. May, J. T., Witkowsky, D. S., and Seidel, D. C., 1980 : Extracting lithium from clays by roast-leach treatment, Report of Investigation 8432, Dept. of the Interior, Bureau of Mines. 

  51. Davidson, C. F., 1981 : Recovery of lithium from clay by selective chlorination, Report of Investigation 8523, U.S. Dept. of the Interior, Bureau of Mines, Pittsburgh, Pa, USA. 

  52. Bell, T., 2019 : An Overview of Commercial Lithium Production. https://www.thebalance.com/lithium-production-2340123. 

  53. Garrett, D. E., 2004 : Handbook of Lithium and Natural Calcium Chloride. Elsevier Science. 

  54. Bohner , H. O., Light metals, 1985 : proceedings of the technical sessions sponsored by the TMS Light Metals Committee at the 114th annual meeting, New York, New York, February 24-28, 1985, Warrendale, Pa.: Metallurgical Society of AIME. 

  55. Medina, L. and El-Naggar, M. A. A., 1984 : An alternative method for the recovery of lithium from spodumene, MTB, 15, pp.725-726. 

  56. Teresa Brown, A. W., Naomi Idoine, Gus Gunn, Richard A Shaw, Debbie Raymer. 2016 : Commodity Profile, Lithium profile, British geologicala survey, Keyworth, Nottingham, UK. 

  57. Saltworks, Lithium Brine Extraction Technologies & Approaches, https://www.saltworkstech.com/articles/lithium-brine-extraction-technologies-and-approaches, June 23, 2019. 

  58. Xu, J., Thomas, H. R., Francis, R. W., Lum, K. R., Wang, J., and Liang, B., 2008 : A review of processes and technologies for the recycling of lithium-ion secondary batteries, Journal of Power Sources, 177, pp.512-527.. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로