$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로
Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization 원문보기

자원환경지질 = Economic and environmental geology, v.52 no.5, 2019년, pp.323 - 336  

최선규 (고려대학교 지구환경과학과) ,  강정극 (고려대학교 지구환경과학과) ,  이종현 (고려대학교 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

한반도에서 중생대 화성활동은 주로 트라이아스기 후-충돌대형, 쥐라기 조산대형 그리고 후기 백악기 후-조산대형 화성활동으로 대표되며, 각 지질시대별 광화작용의 다양성은 마그마의 지화학적 특성과 함께 정치 심도의 차별성에서 유도된 서로 다른 지열수계로부터 발생하게 되었다. 백악기 금속광화작용은 후-조산대형 천부 화성활동과 관련된 약 115~45 Ma(주 광화기; 약 100~60 Ma)의 광범위한 기간에 걸쳐서 진행되었으며, 대부분 금속광상은 소규모 암주형 화강암체를 따라 집중되는 공간적 배태양상을 보인다. 경기육괴와 영남육괴에서 후기 백악기 금속광상은 전반적으로 공주-음성 단층계와 영동-광주 단층계 및 경상분지의 경계부를 따라 분포하며, 대부분 원지성 천열수~중열수 Au-Ag 맥상 광상 또는 점이성 중열수 Zn-Pb-Cu 맥상 광상으로 산출되고 있다. 반면에 태백산분지, 옥천대 및 경상분지에서는 스카른형, 탄산염교대형, 열수충진형 맥상, 반암형, 각력 파이프형, 칼린형 광상과 같은 다양한 광상 유형으로부터 상이한 금속종이 산출되고 있다. 후기 백악기 금속광화작용은 지역에 따라 광화유체의 유동성 차이뿐만 아니라, 관계 화강암의 근접성 차이에서 나타나는 침전 환경의 차별성으로부터 다양한 광상유형 및 광종이 유도되었다. 백악기 광상 유형의 다양성은 근본적으로 관계화성암의 분화도 및 산화도와 같은 지화학적 특성에 따라 좌우되지만, 광화유체는 전반적으로 중간황형~저황형(intermediate~low sulfidation) 열수의 진화 특성을 보인다.

Abstract AI-Helper 아이콘AI-Helper

The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical charac...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 중생대부터 신생대 초기까지 한반도에서 지각 진화 과정은 각 지질시대에 따라 지각 내부의 온도-압력이 서로 다른 변수로 작용함으로써 상이한 금속광화작용이 발생하게 되었다. 본 논문에서는 광화시기, 광상 유형 및 광종을 종합적으로 비교하여, 한반도의 백악기 광상구의 문제점을 점검하고 조구조적 특성이 반영된 W-Mo 광상의 부존 가능성을 재검토하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
각 지질시대별 광화작용의 다양성은 어떠한 요인으로부터 발생하게 되었는가? 한반도에서 중생대 화성활동은 주로 트라이아스기 후-충돌대형, 쥐라기 조산대형 그리고 후기 백악기 후-조산대형 화성활동으로 대표되며, 각 지질시대별 광화작용의 다양성은 마그마의 지화학적 특성과 함께 정치 심도의 차별성에서 유도된 서로 다른 지열수계로부터 발생하게 되었다. 백악기 금속광화작용은 후-조산대형 천부 화성활동과 관련된 약 115~45 Ma(주 광화기; 약 100~60 Ma)의 광범위한 기간에 걸쳐서 진행되었으며, 대부분 금속광상은 소규모 암주형 화강암체를 따라 집중되는 공간적 배태양상을 보인다.
트라이아스기 화강암체는 어떠한 특징을 가지고 있는가? , 2011; Yi et al,, 2016). 경기육괴에 분포하는 트라이아스기 화강암체는 주로 대륙충돌 이후에 유도된 맨틀물질의 유입으로 발생한 알칼리 계열 화성활동이 우세한 특징을 보이고 있다(Seo et al., 2010; Seo et al.
백악기 금속광상의 대표 광상에는 어떤 것들이 있는가? 백악기 금속광상은 귀금속, 비철금속, 철, 철합금 및 희유금속 등 다양한 금속종이 수반되는 산출 특징을 보인다. 이러한 금속광상 유형은 주로 마그마성 열수 기원의 스카른형 광상, 탄산염교대형 광상과 열극충진 형 맥상광상으로 대표되며, 관계 화성암의 공간적 근접성과 침식 정도에 따라 근지성 광상에서 원지성 광상이 다양한 산출 양상을 보인다.
질의응답 정보가 도움이 되었나요?

참고문헌 (51)

  1. Cerny, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026. 

  2. Cheong, C.S., Kwon, S.T. and Sagong, H. (2002) Geochemical and Sr-Nd-Pb isotopic investigation of Triassic grnitoids and basement rocks in the northern Gyeongsang Basin, Korea: Implications for the young basement in the east Asian continental margin. Island Arc, v.11, p.25-44. 

  3. Choi, S.-G. and Pak, S.J. (2007) The origin and evolution of the Mesozoic ore-forming fluids in South Korea: Their genetic implications. Econ. Env. Geol., v.40, p.517-535. 

  4. Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005a) Origin of Mesozoic gold deposits in South Korea. Island Arc, v.14, p.102-114. 

  5. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005b) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v.26, p.115-135. 

  6. Choi, S.-G., Pak, S.J., Kim, C.S., Ryu, I.-C. and Wee, S.M. (2006a) The origin and evolution of mineralizing fluids in the Cretaceous Gyeongsang Basin, southeastern Korea. Jour. Geochem. Explor., v.89, p.61-64. 

  7. Choi, S.-G., Pak, S.J., Kim, S.W., Kim, C.S. and Oh, C.-W. (2006b) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v.39, p.567-581. 

  8. Choi, S.-G., Park, J.W., Seo, J., Kim, C.S., Shin, J.-K., Kim, N.H., Yoo, I.K. Lee, J.Y. and Ahn, Y.-H. (2007) Hidden porphyry-related ore potential of the Geumseong Mo deposit and its genetic environment. Econ. Env. Geol., v.40, p.1-14. 

  9. Choi, S.-G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009a) Re-evaluation of Genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Env. Geol., v.42, p.301-314. 

  10. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J. and Kim, S.W. (2009b) Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, v.18, p.266-281. 

  11. Choi, S.-G., Koo, M.-H., Kang, H.-S. and Ahn, Y.H. (2011) Major molybdenum mineralization and igneous activity, south Korea. Econ. Env. Geol., v.44, p.109-122. 

  12. Cho, D.R. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. Jour. Geol. Soc. Korea, v.30, p.41-61. 

  13. Chough, S.K., Kown, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korea peninsula: a review and new view. Earth Sci. Rev. v.52, p.175-235. 

  14. Corbett, G.J. and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization. Rev. in Econ. Geol., 6, 235p. 

  15. Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Econ. Geol., 75th Anniversary Volume, p.317-391. 

  16. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothemal syatems: Transitions from porphyry to epithermal environments. p.285-313. In: Simmons, S.F. and Graham, I, eds Volcanic, geothermal, and oreforming fluids: Rulers and witnesses of processes within the Earth. Special Pub. in Econ. Geol. v.10, 343p. 

  17. Hong, S.S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. Jour. Petro. Soc. Korea, v.10, p.36-55. 

  18. Hong, S.S. and Cho, D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea (3). KIGAM, KR-03-01, p.455-526. 

  19. Jin, M.S., Lee, Y.S. and Ishihara, S. (2001) Granitoids and their magnetic susceptibility in South Korea. Resource Geol. v.51, p.189-204. 

  20. Jwa, Y.J. (1998) Temporal, spatial and geochemical discriminations of granitoids in south Korea. Resource Geol., v.47, p.273-284. 

  21. Jwa, Y.-J. (2004) Possible source rocks of Mesozoicgranites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh, v.95, p.181-195. 

  22. Kang, J., Choi, S-G, Seo, J., Kim, S.-T. Kim, G., Lee, J. and Kim, C.S. (2018) Skarn evolution of a giant Sangdong W-Mo deposit, South Korea. 15th IAGOD, Argentina Salta, p.86-87. 

  23. Kim, G.B., Choi, S.-G., Seo, J., Kim, C.S., Kim, J. and Koo, M. (2017) Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif. Econ. Env. Geol., v.50, p.181-193. 

  24. Kim, N., Cheong, C.S., Yi, K., Jeong, Y.J. and Koh, S.M. (2016) Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, v.79, p.78-87. 

  25. Kim, O.J. (1971a) Study on the intrusion epochs of younger granite and their bearing orogenesis in South Korea. Jour. Korean Inst. Mining Geol., v.4, p.1-10. 

  26. Kim, O.J. (1971b) Metallogenic epochs and provinces of south Korea. Jour. Geol. Soc. Korea, v.7, p.37-59. 

  27. Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.J. and Santosh, M. (2011) Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research, v.20, p.865-889. 

  28. Lee, J.H., Choi, S.G., Kim, C.S. and Seo, J. (2018) The geochemistry of the Cretaceous granitoids suites associated with the tungsten polymetallic deposits in the Hwanggangri province, south Korea. 15th IAGOD, Argentina Salta, p.88-89. 

  29. Lee, J.H. (2019) The Characteristics of barren and W-Mo productive Jurassic and Cretaceous granitoids in the Hwanggangri district, South Korea. Unpub. M.S. Thesis, Korea University, p.1-139. 

  30. Lee, S.-G. Ahn, I., Asahara, Y., Tanaka, T. and Lee, S.R. (2019) Geochemical interpretation of magnesium and oxygen isotope systematics in granites with the REE tetrad effect. Geoscience Journal, v.22, p.697-710. 

  31. Lee, S.G., Shin, S.C., Kim, K.H., Lee, T.J., Koh, H.J. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101. 

  32. Lee, S.Y., Choi, S.-G., So, C.S., Ryu, I.-C., Wee, S.-M. and Heo, C.-H. (2003) Base-metal mineralization in the Cretaceous Gyeongsang Basin and its genetic implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong metallogenic provinces. Econ. Environ. Geol., v.36, p.257-268. 

  33. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleo-geographic maps of the Japanese islands. plate tectonic synthesis from 750 Ma to the present. Island Arc. v.6, p.121-142. 

  34. Park, H.I. and Kang, S.J. (1988) Gold and silver mineralization of Samhyungje vein, the Mugeug mine. Jour. Korean Inst. Mining Geol., v.21, p.257-268. 

  35. Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. Jour. Korean Inst. Mining Geol., v.21, p.57-67. 

  36. Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. Jour. Korean Institute of Mining Geol., v.21, p.349-358. 

  37. Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.H. and Park, J.N. (1973) The geology of the Hwanggangri mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 119p. 

  38. Sagong H., Kwon S.T. and Ree J.H. (2005) Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, v.24, p.1-18. 

  39. Seo, J., Choi, S.-G. and Oh, C.W. (2010) Petrology, geochemistry, and geochronology of the Post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, v.18, p.479-496. 

  40. Seo, J,, Choi, S.-G., Kim, D.W., Park, J.W. and Oh, C.W. (2015) A new genetic model for the Triassic Yangyang iron-oxide-apatite deposit, South Korea: Constraints from in situ U-Pb and trace element analyses of accessory minerals. Ore Geology Reviews, v.70, p.110-135. 

  41. Seo, J., Choi, S.-G., Park, J.W., Whattam, S., Kim, D.W., Ryu, I.-C. and Oh, C.W. (2016) Geochemical and mineralogical characteristics of the Yonghwa phoscorite-carbonatite complex, South Korea, and genetic implications. Lithos, v.262, p.609-619. 

  42. Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae-Hwa Tungsten-Molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ. Geol., v.82, p.471-481. 

  43. Shimazaki, H., Shibata, K., Uchiumi, S., Lee, M.S. and Kaneda, H. (1987) K-Ar ages of some W-Mo deposits and their bearing on metallogeny of South Korea. Mining Geol., v.37, p.395-401. 

  44. Shin, Y.H., Yoo, B.C., Lim, M., Park, Y.-S. and Ko, I.S. (2014) Gravity exploration inferring the source granite of the NMC Moland mine, Jecheon, Chungbuk. Econ. Env. Geol., v.47, p.107-119. 

  45. So, C.S. and Shelton, K. L. (1983) A sulfur isotopic and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea. Econ. Geol., v.78, p.326-332. 

  46. So, C.S. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v.82, p.987-1000. 

  47. Uchida, E., Choi, S.-G., Baba, D. and Wakisaka, Y. (2012) Petrogenesis and solidification depth of the Jurassic Daebo and Cretaceous Bulguksa granitic rocks in south Korea. Resource Geol., v.62, p.281-295. 

  48. Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, south Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. 

  49. Yi, S.B., Oh, C.W., Lee, S.-Y., Choi, S.-G., Kim, T. and Yi, K. (2016) Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula. Lithos, v.246-247, p.149-164. 

  50. Yoo, B.C., Lee, H.K. and White, N.C. (2006) Gold-bearing mesothermal veins from the Gubong mine, Cheongyang gold distirict, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol., v.101, p.883-901. 

  51. Zhai, M.G., Zhang, Y.B., Zhang, X.H., Wu, F.Y., Peng, P., Li, Q.L., Hou, Q.L., Li, T.S. and Zhao, L. (2016) Renewed profile of the Mesozoic magmatism in Korean Peninsula: regional correlation and broader implication for cratonic destruction in the North China Craton. Sci. China Earth Sci., v.59, p.1-34. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로