$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교
Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding 원문보기

Korean chemical engineering research = 화학공학, v.57 no.6, 2019년, pp.768 - 773  

오소형 (순천대학교 화학공학과) ,  곽아현 (순천대학교 화학공학과) ,  이대웅 (순천대학교 화학공학과) ,  이무석 (코오롱인더스트리(주) Eco연구소 중앙기술원) ,  이동훈 (코오롱인더스트리(주) Eco연구소 중앙기술원) ,  박권필 (순천대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

고분자전해질연료전지(PEMFC)의 고분자막의 전기화학적 내구성을 평가하는 펜톤(Fenton)반응과 개회로전위 유지(OCV Holding)방법에 의한 고분자 막의 열화 결과를 비교하였다. 펜톤 반응은 셀 밖에서 OCV Holding 방법보다 더 짧은 시간에 고분자막의 화학적인 내구를 평가할 수 있는 방법이다. 펜톤 반응은 과산화수소 30%, 철이온 80 ppm, $80^{\circ}C$에서 24시간 실시하였다. OCV Holding은 $90^{\circ}C$, 상대습도 30%, OCV에서 168시간 시간 구동하였다. 펜톤 반응에 의해서는 고분자막의 내부에서 열화가 많이 발생하는 현상을 보였다. 반면에 OCV Holding에서는 표면과 내부 전체적인 열화에 의해 막 두께가 얇아졌다. 펜톤 반응에 의해 불소유출속도는 OCV Holding에 비해 10배 이상 높았다. 수소투과속도는 펜톤 반응 24시간에 약 30% 증가하였다. OCV Holding에서는 24시간에 수소투과도가 감소하였고 이후 증가하는 경향을 보였다. 전체적으로 펜톤 반응과 OCV Holding에 의한 고분자막 열화는 차이가 있었다.

Abstract AI-Helper 아이콘AI-Helper

The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer me...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이와 같은 열화 조건차이에 의한 고분자막의 열화 결과는 어떻게 다르게 나오는지 체계적으로 연구해 보고된 내용이 거의 없는 상태다. 그래서 본 연구에서는 두 방법에 의한 막의 열화 후 형태변화, 화학적 구조 변화, 불소 유출 속도, 수소투과도 변화 등을 비교 검토하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화학적/전기화학적 열화란 무엇인가? 전해질 막의 열화는 화학적/전기화학적 열화, 기계적(mechanical)열화로 크게 분류된다[10]. 화학적/전기화학적 열화는 셀 내에서 발생한 라디칼/과산화수소가 고분자막을 공격해 막이 열화되는 것을 말한다[10,11].
고분자 전해질 연료전지의 시장 확대가 지연되고 있는 이유는 무엇인가? 낮은 온도에서 화학에너지를 전기에너지로 직접 변환시켜 높은 에너지 전환 효율을 갖으며, 환경 친화적이기 때문에 다양한 분야에서 전력 공급원으로 각광받고 있는 고분자 전해질 연료전지는 짧은 수명, 높은 가격 때문에 시장 확대가 지연되고 있다[1,2]. 적용 분야에 따라 5,000시간에서 60,000시간 정도의 수명을 요하는 고분자 전해질 연료전지는[3] 장시간 운전하는 동안 막과 전극 접합체(MEA, Membrane and Electrode Assembly)를 구성하는 요소들이 열화 되어 이 같은 수명 목표를 충족시키지 못하고 있다[4-9].
표면에 기포처럼 부풀어 오른 열화현상이 나타난 이유는 무엇인가? 표면에 기포처럼 부풀어 오른 열화현상을 볼 수 있다. Fenton 반응에서 발생한 라디칼과 Fenton 용액중의 과산화수소가 표면에서 뿐만 아니라 고분자막 내부로 침투해 들어가 막 안쪽에서 고분자를 훼손시켰기 때문에 나타난 형태라고 본다. 이와 같은 현상은 Fig.
질의응답 정보가 도움이 되었나요?

참고문헌 (23)

  1. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107, 3904-51(2007). 

  2. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). 

  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016). 

  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140, 2872-2877(1993). 

  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). 

  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1838-1854 (2006). 

  7. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). 

  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113 (2005). 

  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. of Power Sources, 131, 41-48(2004). 

  10. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003). 

  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). 

  12. Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). 

  13. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A.,"Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). 

  14. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006). 

  15. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes", Polym. Degrad. Stab., 98(9), 1766-1772(2013). 

  16. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with $CeO_2$ as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). 

  17. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432, 66-72(2013). 

  18. Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polymer Degradation and Stability, 138, 98-105(2017). 

  19. Gummalla, M., Atrazhev, V. V., Condit, D., Cipollini, N., Madden, T., Kuzminyh, N. Y., Weiss, D. and Burlatsky, S. F., "Degradation of Polymer-Electrolyte Membranes in Fuel Cells: II. Theoretical Model," J. Electrochem. Soc., 157, B1542(2010). 

  20. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). 

  21. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). 

  22. Liang, Z., Chen, W., Liu, J., Wang, S., Zhou, Z., Li, W., Sun, G. and Xin, Q., "FT-IR Study of the Microstructure of Nafion Membrane," J. Membrane Science, 233, 39-44(2004). 

  23. Wong, K. H. and Kjeang, E., "Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 161(9), F823-F832(2014). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로