$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Mapping of Post-Wildfire Burned Area Using KOMPSAT-3A and Sentinel-2 Imagery: The Case of Sokcho Wildfire, Korea 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.36 no.6 pt.2, 2020년, pp.1551 - 1565  

Nur, Arip Syaripudin (Department of Smart Regional Innovation, Kangwon National University) ,  Park, Sungjae (Department of Smart Regional Innovation, Kangwon National University) ,  Lee, Kwang-Jae (Satellite Operation & Application Center, Korea Aerospace Research Institute) ,  Moon, Jiyoon (Satellite Operation & Application Center, Korea Aerospace Research Institute) ,  Lee, Chang-Wook (Division of Science Education, Kangwon National University)

Abstract AI-Helper 아이콘AI-Helper

On April 4, 2019, a forest fire started in Goseong County and lasted for three days, burning the neighboring areas of Sokcho. The strong winds moved the blaze from one region to another region and declared the worst wildfire in South Korea in years. More than 1,880 facilities, including 400 homes, w...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • Despite the large number of studies that have been published regarding burned area mapping using various machine learning, there is a lack of research using KOMPSAT-3A. By combining high-resolution multispectral data and machine learning, this study aims to map the post-wildfire in Sokcho using high- resolution KOMPSAT-3A and Sentinel-2 imagery with the same acquisition date and band combination. Four post-wildfire maps from two satellite imageries were generated using ANN and SVM classifiers and compared the mapping results to improve fire mitigation, management, and evaluation effectiveness.
  • By combining high-resolution multispectral data and machine learning, this study aims to map the post-wildfire in Sokcho using high- resolution KOMPSAT-3A and Sentinel-2 imagery with the same acquisition date and band combination. Four post-wildfire maps from two satellite imageries were generated using ANN and SVM classifiers and compared the mapping results to improve fire mitigation, management, and evaluation effectiveness.

이론/모형

  • After the post-wildfire classification had been acquired from the Sentinel-2 imagery, an accuracy assessment was performed using the same data and method used for KOMPSAT-3A accuracy assessment. 297 points were used as the test data to generate the ANN and SVM accuracy assessment.
  • By collecting data from KOMPSAT-3A and Sentinel-2, post-wildfire maps were generated. Two classification methods were used to produce the post-wildfire maps: the ANN algorithm and the SVM algorithm, which is considered a novel method for mapping burned area, especially in the region of Sokcho. To reveal the accuracy of the two methods, an accuracy assessment was performed.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Bishop, C. M., 1995. Neural Networks for Pattern Recognition, Oxford University Press, Oxford, GBR. 

  2. Chappell,B., 2019.WildfireRipsAlong South Korea's Eastern Coast, Prompting National Emergency?: NPR, https://www.npr.org/2019/04/05/710197740/wildfire-rips-along-south-koreas-eastern-coast-prompting-national-emergency,Accessed on Sep. 22, 2020. 

  3. Chowdhury, E. H. and Q. K. Hassan, 2015. Operational Perspective of Remote Sensing-Based Forest Fire Danger Forecasting Systems, ISPRS JournalofPhotogrammetryandRemoteSensing, 104: 224-236. 

  4. Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, 20: 37-46. 

  5. Collobert, R. and J.Weston, 2008. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning, Proc. of the 25th International Conference on Machine Learning, Helsinki, FIN, Jul. 5, pp. 160-167. 

  6. Congalton, R. G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sensing of Environment, 37(1): 35-46. 

  7. Cortes, C. and V. Vapnik,1995. Support-Vector Networks, Machine Learning, 20(3): 273-297. 

  8. ESRI(Environmental Systems Research Institute), 2019. Wildfires: Strategies for Safe Recovery. https://www.arcgis.com/apps/Cascade/index.html?appidc0bf23511a5a41208384e917de537563, Accessed on Nov. 1, 2020. 

  9. FAO(Food and Agriculture Organisation), 2007. Fire Management - GlobalAssessment 2006, FAO, Rome, ITA, pp. 6-30. 

  10. Foody, G. M., 2002. Status of Land Cover Classification Accuracy Assessment, Remote Sensing of Environment, 80(1): 185-201. 

  11. Foody, G. M. and A. Mathur, 2004. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1335-1343. 

  12. Grizonnet, M., J. Michel, V. Poughon, J. Inglada, M. Savinaud, and R.Cresson, 2017. OrfeoToolBox: Open Source Processing of Remote Sensing Images, Open Geospatial Data, Software and Standards, 2(1): 1-18. 

  13. Huang, H., D. Roy, L. Boschetti, H. Zhang, L. Yan, S. Kumar, J. Gomez-Dans, and J. Li, 2016. Separability Analysis of Sentinel-2A MSI (Multi-Spectral Instrument) Data for Burned Area Discrimination, Remote Sensing, 8(10): 873. 

  14. Jeon, M.-J., S.-R. Lee, E. Kim, S.-B. Lim, and S.-W. Choi, 2016. Launch and Early Operation Results of KOMPSAT-3A, SpaceOps 2016 Conference, Daejeon, KOR, May. 16-20, p. 2394. 

  15. Kadavi, P. R. and C. W. Lee, 2018. Land Cover Classification Analysis of Volcanic Island in AleutianArc Using anANN (Artificial Neural Network) and a SVM (Support Vector Machine) from Landsat Imagery, Geosciences Journal, 22(4): 653-665. 

  16. Kaufman,Y.J. and D. Tanre, 1994. Direct and Indirect Methods for Correcting the Aerosol Effect on Remote Sensing, Remote Sensing of Environment, 4257(95): 65-79. 

  17. Kavzoglu, T. and I. Colkesen, 2009. A Kernel Functions Analysisfor Support Vector Machines for Land Cover Classification, International Journal of Applied Earth Observation and Geoinformation, 11(5): 352-359. 

  18. Keramitsoglou, I., C. T. Kiranoudis, B. Maiheu, K. D. Ridder, I. A. Daglis, P. Manunta, and M. Paganini, 2013. Heat Wave Hazard Classification and Risk Assessment Using Artificial Intelligence Fuzzy Logic, Environmental Monitoring and Assessment, 185(10): 8239-8258. 

  19. Khorram, S., 1999. Accuracy Assessment of Remote Sensing-Derived Change Detection, American Society for Photogrammetry and Remote Sensing, Maryland, USA, pp. 1-65. 

  20. Kim, C., 2016. Land Use Classification and Land Use Change Analysis Using Satellite Images in Lombok Island, Indonesia, Forest Science and Technology, 12(4): 183-191. 

  21. Kim, J.-Y. and T.-H. Kim, 2019. Coastal Forest Fire Kills 2, Destroys 120 Homes in S. Korea, https://apnews.com/article/0a7e0c1c20354451aec018f0870429b8, Accessed on Oct. 5, 2020. 

  22. KOMPSAT-3A., Image Data Manual v1.5, 2019. https://www.si-imaging.com/resources/?pageid2&uid337&moddocument, Accessed on Nov. 13, 2020. 

  23. Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3AImage Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract). 

  24. Lee, S.-M. and J.-C. Jeong, 2019. Forest Fire Severity Classification Using Probability Density Function and KOMPSAT-3A, Korean Journal of Remote Sensing, 35(6-4): 1341-1350 (in Korean with English abstract). 

  25. Li, C., J. Wang, L. Wang, L. Hu, and P. Gong, 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery, Remote Sensing, 6(2): 964-983. 

  26. Liu, Y., B. Zhang, L.-M. Wang, and N. Wang, 2013. A Self-Trained Semisupervised SVM Approach to the Remote Sensing Land Cover Classification, Computers & Geosciences, 59: 98-107. 

  27. Martell, D., 2011. The Development and Implementation of Forest Fire Management Decision Support Systemsin Ontario, Canada:PersonalReflections on Past Practices and Emerging Challenges, Mathematical and Computational Forestry and Natural-Resource Sciences, 3(1): 18-26. 

  28. Mercier, G. and M. Lennon, 2003. Support Vector Machinesfor Hyperspectral Image Classification with Spectral-Based Kernels, Proc. of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, FRA, Jul. 21, vol. 1, pp. 288-290. 

  29. Mountrakis, G., J. Im, and C. Ogole, 2011. Support Vector Machinesin Remote Sensing:A Review, ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259. 

  30. Nam, H.-W., 2019. KEPCO May Face Damage Suit for Forest Fire in Gangwon Province, https://www.koreatimes.co.kr/www/tech/2019/04/694_266763.html, Accessed on Sep. 22, 2020. 

  31. Navarro, G., I. Caballero, G. Silva, P.-C. Parra, A. Vazquez, and R. Caldeira, 2017. Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery, International Journal of Applied Earth Observation and Geoinformation, 58: 97-106. 

  32. Page, S, E., F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin, 2002. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997, Nature, 420(6911): 61-65. 

  33. Roteta, E., A. Bastarrika, M. Padilla, T. Storm, and E. Chuvieco, 2019. Development of a Sentinel-2 Burned Area Algorithm: Generation of a Small Fire Database for Sub-Saharan Africa, Remote Sensing of Environment, 222: 1-17. 

  34. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1973. MonitoringVegetation Systems in the Great Plains with ERTS, Proc. of Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, Dec. 10-14, pp. 309-317. 

  35. Roy, D. P., H. Huang, L. Boschetti, L. Giglio, L. Yan, H. H. Zhang, and Z. Li, 2019. Landsat-8 and Sentinel-2 BurnedArea Mapping-ACombined Sensor Multi-Temporal Change Detection Approach, Remote Sensing of Environment, 231: 111254. 

  36. Ruokolainen, L. and K. Salo, 2009. The Effect of Fire Intensity on Vegetation Succession on a Sub-Xeric Heath during Ten Years after Wildfire, Annales Botanici Fennici, 46(1): 30-42. 

  37. Stefanidou, M., S. Athanaselis, and C. Spiliopoulou, 2008. Health Impacts of Fire Smoke Inhalation, Inhalation Toxicology, 20(8): 761-766. 

  38. Syifa, M., M. Panahi, and C.-W. Lee, 2020. Mapping of Post-Wildfire Burned Area Using a Hybrid Algorithm and Satellite Data: The Case of the Camp Fire Wildfire in California, USA, Remote Sensing, 12(4): 623. 

  39. Tehrany, M. S., B. Pradhan, and M. N. Jebur, 2014. Flood Susceptibility Mapping Using a Novel Ensemble Weights-of-Evidence and Support Vector Machine Models in GIS, Journal of Hydrology, 512: 332-343. 

  40. Vega-Garcia, C. and E. Chuvieco, 2006. Applying Local Measures of Spatial Heterogeneity to Landsat-TM Images for Predicting Wildfire Occurrence in Mediterranean Landscapes, Landscape Ecology, 21(4): 595-605. 

  41. Veraverbeke, S., W. W. Verstraeten, S. Lhermitte, and R.Goossens, 2010. Evaluating Landsat Thematic Mapper Spectral Indices for Estimating Burn Severity of the 2007 Peloponnese Wildfires in Greece, International Journal of Wildland Fire, 19(5): 558. 

  42. Wang, Q., G.A. Blackburn, A. O. Onojeghuo, J. Dash, L. Zhou, Y. Zhang, and P. M. Atkinson, 2017. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data, IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3885-3899. 

  43. Wu, Z., B. Middleton, R. Hetzler, J. Vogel, and D. Dye, 2015. Vegetation Burn Severity Mapping Using Landsat-8 and Worldview-2, Photogrammetric Engineering and Remote Sensing, 81(2): 143-154. 

  44. Xiu, L. and X. Liu, 2003. Current Status and Future Direction of the Study on Artificial Neural Network Classification Processing in Remote Sensing, Remote Sensing Technology and Application, 18(5): 339-345. 

  45. Zare, M., H. R. Pourghasemi, M. Vafakhah, and B. Pradhan, 2013. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model:A Comparison between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms, Arabian Journal of Geosciences, 6(8): 2873-2888. 

  46. Zhai, S. and T. Jiang, 2014. A Novel Particle Swarm Optimization Trained Support Vector Machine for Automatic Sense-through-Foliage Target Recognition System, Know.-Based Syst, 65(1): 50-59. 

  47. Zulpe, N. andV. Pawar, 2012. GLCMTextural Features for Brain Tumor Classification, International Journal of Computer Science Issues, 9(3): 354-359. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로