$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier 원문보기

International journal of naval architecture and ocean engineering, v.12, 2020년, pp.667 - 679  

Ding, Shifeng (School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology) ,  Wang, Gang (Shanghai Rules and Research Institute, China Classification Society (CCS)) ,  Luo, Qiuming (Shanghai Rules and Research Institute, China Classification Society (CCS))

Abstract AI-Helper 아이콘AI-Helper

As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed...

주제어

참고문헌 (33)

  1. Akkaoui, Q., Capiez, L.E., Soize, C., Ohayon, R., 2019. Revisiting the experiment of a free-surface resonance of a liquid in a vibration tank using a nonlinear fluidestructure computational model. J. Fluid Struct. 85, 149-164. 

  2. Dai, J., Han, M.M., Kok, K.A., 2019. Moving element analysis of partially filled freight trains subject to abrupt braking. Int. J. Mech. Sci. 151, 85-94. 

  3. Ge, L., Yan, L., Guan, G., et al., 2018. Numerical research on the anti-sloshing effect of a ring baffle in an independent type C LNG tank. J. Zhejiang Univ. - Sci. 19 (10), 758-773. 

  4. Green, M.D., Peiro, J., 2018. Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching. Comput. Fluids 174, 179-199. 

  5. Guan, H., Xue, Y.F., Wei, Z.J., 2018. Numerical simulations of sloshing and suppressing sloshing using the optimization technology method. Appl. Math. Mech. (Engl. Ed.) 39 (6), 845-854. 

  6. Hitoshi, G., Abbas, K., Hiroyuki, I., Taro, A., Kenichiro, S., 2014. On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46, 104-115. 

  7. Hu, J., Zhou, L., 2015. Experimental and numerical study on ice resistance for icebreaking vessels. Int. J. Naval Architect. Ocean Eng. 7, 626-639. 

  8. Hu, J., Zhou, L., 2016. Further study on level ice resistance and channel resistance for an icebreaking vessel. Int. J. Naval Architect. Ocean Eng. 8 (Issue2), 169-176. 

  9. Huang, S., Duan, W.Y., Han, X.L., Nicoll, R., You, Y., Sheng, S.W., 2018. Nonlinear analysis of sloshing and floating body coupled motion in the time domain. Ocean Eng. 164, 350-366. 

  10. Jena, D., Biswal, K.C., 2017. A numerical study of violent sloshing problems with modified MPS method. J. Hydrodyn. 29 (4), 659-667. 

  11. Jiang, M., Zhong, W.J., Yu, J.X., Liu, P.L., Yin, H.J., 2018. Experimental study on sloshing characteristics in the elastic tank based on morlet wavelet transform. China Ocean Eng. 32 (4), 400-412. 

  12. Jin, H., Liu, Y., Li, H.J., Fu, Q., 2017. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate. Ocean. Coast. Sea Res. 16 (4), 575-584. 

  13. Khayyer, A., Gotoh, H., Hosein, F., Shimizu, Y., 2018. An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139-164. 

  14. Liu, W.F., Xue, H.X., Tang, W.Y., Hu, X.B., 2015. Sloshing loads analysis of LNG carrier with independent type B prismatic tanks. Ship Eng. 37 (7), 22-25, 72. 

  15. Rawat, A., Matsagar, V.A., Nagpal, A.K., 2019. Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach. Soil Dynam. Earthq. Eng. 119, 196-219. 

  16. Ryu, M.C., Jung, J.H., Kim, Y.S., Kim, Y., 2016. Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications. Int. J. Naval Architect. Ocean Eng. 8, 537-553. 

  17. Sanapala, V.S., Sajish, S.D., Velusamy, K., Ravisankar, A., Patnaik, B.S.V., 2019. An experimental investigation on the dynamics of liquid sloshing in a rectangular tank and its interaction with an internal vertical pole. J. Sound Vib. 449, 43-63. 

  18. Saripilli, J.R., Sen, D., 2018. Sloshing-coupled ship motion algorithm for estimation of slosh-induced pressures. J. Mar. Sci. Appl. 17, 312-329. 

  19. Seo, M.G., Kim, Y., Park, D.M., 2017. Effect of internal sloshing on added resistance of ship. J. Hydrodyn. 29 (1), 13-26. 

  20. Simoninia, A., Theunissen, R., Masullo, A., Vetrano, M.R., 2019. PIV adaptive interrogation and sampling with image projection applied to water sloshing. Exp. Therm. Fluid Sci. 102, 559-574. 

  21. Su, Y., Liu, Z.Y., Gao, Z.L., 2018. Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations. J. Hydrodyn. 30 (5), 958-961. 

  22. Sun, L., Luo, X.C., Liu, C.F., Jiang, S.C., 2019. Simulation of ship motions coupled with tank sloshing in frequency domain. Chin. J. Ship Res. 14 (1), 9-18. 

  23. Wang, S., 2001. A Dynamic Model for Breaking Pattern of Level Ice by Conical Structures. Finland: Department of Mechanical Engineering, Helsinki University of Technology. 

  24. Wang, W.Y., Peng, Y., Wei, Z.J., Guo, Z.J., Jiang, Y., 2019. High performance analysis of liquid sloshing in horizontal circular tanks with internal body by using IGASBFEM. Eng. Anal. Bound. Elem. 101, 1-16. 

  25. Yu, L.T., Xue, M.A., Zheng, J.H., 2019. Experimental study of vertical slat screens effects on reducing shallow water sloshing in a tank under horizontal excitation with a wide frequency range. Ocean Eng. 173, 131-141. 

  26. Zabihi, M., Mazaheri, S., Namin, M.M., 2019. Experimental hydrodynamic investigation of a fixed offshore Oscillating Water Column device. Appl. Ocean Res. 85, 20-33. 

  27. Zhang, J.P., Shao, Z.F., Yang, Y., Xie, Y.H., 2017. Research on motion response and structure response of oil tanker thinking about liquid sloshing. Ship Build. China 58 (4), 83-90. 

  28. Zhou, L., Riska, K., von Bock und Polach, R., Moan, T., Su, B., 2013. Experiments on level ice loading on an icebreaking tanker with different ice drift angles. Cold Reg. Sci. Technol. 85, 79-93. 

  29. Zhou, L., Riska, K., Ji, C., 2017. Simulating transverse icebreaking process considering both crushing and bending failures. Mar. Struct. 54, 167-187. 

  30. Zhou, L., Ding, S.F., Song, M., Gao, J.L., Wei, S., 2019. A Simulation of Non-Simultaneous Ice Crushing Force for Wind Turbine Towers with Large Slopes. ENERGIES 12. 

  31. Zhou, L., Ling, H.J., Chen, L.F., 2018. Model tests of an icebreaking tanker in broken ice. Int. J. Naval Architect. Ocean Eng. 11 (1), 422-434. 

  32. Zhou, L., Diao, F., Song, M., Han, Y., Ding, S.F., 2020b. Calculation methods of icebreaking capability for a double acting polar ship. J. Mar. Sci. Eng. 8 (179) https://doi.org/10.3390/jmse8030179. 

  33. Zhang, T., Yu, F.R., Fan, C.M., Li, P.W., 2016. Simulation of two-dimensional sloshing phenomenon by generalized finite difference method. Eng. Anal. Bound. Elem. 63, 82-91. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로