$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows 원문보기

International journal of naval architecture and ocean engineering, v.12, 2020년, pp.967 - 987  

Choi, Jung-Kyu (Department of Naval Architecture and Ocean Engineering, Mokpo National University) ,  Kim, Hyoung-Tae (Department of Naval Architecture and Ocean Engineering, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transitio...

주제어

참고문헌 (35)

  1. ANSYS, 2015. ANSYS Documentation. ANSYS Inc. 

  2. Bhattacharyya, Anirban, Krasilnikov, Vladimir, Steen, Sverre, 2016. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs. Ocean Eng. 112, 226-242. 

  3. Carrica, P.M., Castro, A.M., Stern, F., 2013. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15, 316-330. 

  4. Castro, A.M., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluid 51, 35-47. 

  5. Choi, J.K., 2014. A Study on Estimation of Self-Propulsion Performance of a Ship Using Numerical Analysis. Ph. D. Thesis. Chungnam National University, Daejeon, Rep. of Korea. 

  6. Choi, J.K., Kim, H.T., 2010. A study of using wall function for numerical analysis of high Reynolds number turbulent flow. J. Soc. Naval Arch. Korea 47 (5), 647-655. 

  7. Choi, J.E., Kim, J.H., Lee, H.G., 2011. Computational study of the scale effect on resistance and propulsion performance of VLCC. J. Soc. Naval Arch. Korea 48 (3), 222-232. 

  8. Coles, D.E., 1954. Measurements of turbulent friction on a smooth flat plate in supersonic flow. J. Aeronaut. Sci. 21 (7), 433-448. 

  9. EFFORT(European fullscale flow research and technology), 1998. https://cordis.europa.eu/programme/id/FP5-GROWTH. 

  10. Fage, A., Falkner, V.M., 1930. An experimental determination of the intensity of friction on the surface of an aerofoil. Proceed. Royal Soc. A 129 (810), 378-410. 

  11. Gaggero, S., Villa, D., Brizzolara, S., 2010. RANS and PANEL method for unsteady flow propeller analysis. Proceed. 9th Int. Conf. Hydrodyn. 11-86, 564-569. Shanghai, China October. 

  12. ITTC propeller committee, 1978. Report of the propeller committee. 15th Proceedings of International Towing Tank Conference. ITTC, Hague, Netherlands, September. 

  13. ITTC propeller committee, 1984. Report of the propeller committee. 17th Proceedings of International Towing Tank Conference, ITTC, Goteborg, Sweden, 8 - 15 September. 

  14. Jessup, S.D., 1989. An Experimental Investigation of Viscous Aspects of Propeller Blade Flow. Ph.D. Thesis. The Catholic university of America. 

  15. JoRes(Joint Research Project), 2019. https://jores.net/. 

  16. Kim, K.S., Kim, K.Y., Ahn, J.W., 2000. Experimental correlation analysis of propeller open-water characteristics at towing tank and cavitation tunnel. J. Soc. Naval Arch. Korea 37 (1), 26-39. 

  17. Kim, J., Park, I.R., Kim, K.S., Van, S.H., 2005. RANS simulations for KRISO container ship and VLCC tanker. J. Soc. Naval Arch. Korea 42 (6), 593-600. 

  18. Kim, Min-Geon, Ahn, Hyung Taek, Lee, Jin-Tae, Lee, Hong-Gi, 2014. Fully unstructured mesh based computation of viscous flow around marine propellers. J. Soc. Naval Arch. Korea 51 (2), 162-170. 

  19. Kim, K.S., Kim, Y.C., Kim, J., Van, S.H., 2018. RANS simulations for propeller open water tests in towing tank. Proceedings of the Twenty-Eighth(2018) International Ocean and Polar Engineering Conference. ISOPE, pp. 782-789. 

  20. Kulczyk, J., Skraburski, L., Zawislak, M., 2007. Analysis of screw propeller 4119 using the Fluent system. Arch. Civil and Mech. Eng. 7 (4), 130-137. 

  21. Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269-289. 

  22. Lee, Joon-Hyoung, Kim, Moon-Chan, Shin, Yong-Jin, Kang, Jin-Gu, Jang, Hyun-Gil, 2017. A study on performance of tip rake propeller in propeller open water condition. J. Soc. Naval Arch. Korea 54 (1), 10-17. 

  23. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker, S., 2006. A correlation-based transition model using local variables-Part I: Model formulation. J. Turbomach. 128 (3), 413-422. 

  24. Moran-Guerrero, A., Gonzales-Gutierrez, L.M., Oliva-Remola, A., 2018. On the influence of transition modeling and crossflow effects on open water propeller simulations. Ocean Eng. 156, 101-119. 

  25. Muller, S.B., Abdel-Maksoud, M., Hilbert, G., 2009. Scale effects on propellers for large container vessels. Proceedings Of First International Symposium on Marine Propulsors, Trondheim, Norway. June. 

  26. Paik, Kwang-Jun, 2017. Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. Int. J. Naval Arch. Ocean Eng. 9 (2017), 655-667. 

  27. Patel, V.C., 1998. Flow at high Reynolds number and over rough surfaces-achilles heel of CFD. J. Fluid Eng. 120 (3), 1-26. 

  28. Rao, G.N.V., Keshavan, N.R., 1972. Axisymmetric turbulent boundary layers in zero pressure-gradient flows. J. Appl. Mech. 39 (1), 25-32. 

  29. Schlichting, H., 1979. Boundary layer theory, Seventh ed. McGraw-Hill, USA. 

  30. https://simman2014.dk/, SIMMAN, 2014. 

  31. Walters, D.K., Cokljat, D., 2008. A three-equation Eddy-viscosity model for Reynold-averaged Navier-Stokes simulations of transitional flow. J. Fluid Eng. 130 (12), 14, 121401. 

  32. Wang, Xiao, Walters, Keith, 2012. Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling. J. Fluid Eng. 134 (7), 10, 071107. 

  33. White, F.H., 1974. Viscous Fluid Flow. McGraw-Hill, USA. 

  34. Yao, Huilan, Zhang, Huaixin, 2018. A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force. Int. J. Naval Arch. Ocean Eng. 10 (2018), 477-490. 

  35. Youssef, F.A., Kassab, S.Z., Al-Fahed, S.F., 1998. Low Reynolds number axisymmetric turbulent boundary layer on a cylinder. Mech. Res. Commun. 25 (1), 33-48. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로