$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

페로브스카이트 태양전지 안정성 개선을 위한 광활성층 연구 현황과 전망
Future Prospect of Perovskite Solar Cells for Practical Applications 원문보기

Korean chemical engineering research = 화학공학, v.58 no.1, 2020년, pp.1 - 20  

송재관 (전남대학교 화학공학부) ,  김도형 (전남대학교 화학공학부)

초록
AI-Helper 아이콘AI-Helper

화석 연료를 이용하는 에너지원이 심각한 환경오염을 일으키고, 인류의 건강한 삶에 큰 영향을 주어 청정한 에너지 자원의 개발은 매우 중요한 이슈가 되었다. 화석 연료를 대체하기 위한 다양한 에너지원의 개발이 진행되고 있으며, 그 중 최근에는 태양 전지에 대한 관심이 점차 커지고 있다. 현재 실용화 되어 있는 태양전지는 실리콘 기반 태양전지인데, 제조비용이 큰 단점이 부각되고 있으며 이에 따라 이의 단점을 개선하기 위한 노력과 동시에 실리콘 기반 태양전지를 대체하려는 시도가 이루어지고 있다. 이중 실리콘 기반 태양전지를 대체할 후보로 페로브스카이트 태양전지가 큰 관심을 받고 있는데, 그 이유는 높은 광전 변환 효율, 저렴한 제조비용, 유연한 형태로의 제조 가능성 때문이다. 그러나 현재 보고되고 있는 페로브스카이트 태양전지는 장기적 안정성이 떨어지며, 또 납으로 인해 신체에 유해하다는 큰 단점을 가지고 있다. 본 리뷰에서는 페로브스카이트 태양전지의 장기적 안정성을 높이는 방안들 그리고 환경적으로 유해한 납을 사용하지 않는 방안들의 최신 연구 방향 동향에 관하여 살펴보았다.

Abstract AI-Helper 아이콘AI-Helper

Development of efficient methods for clean energy production became a critical issue to improve the quality of human lives. Solar cells is considered as one of the alternative solutions to resolve the issue. Although Si-based solar cells are only popularly utilized for practical applications, high m...

주제어

표/그림 (23)

질의응답

핵심어 질문 논문에서 추출한 답변
태양전지란 무엇인가? 태양전지는 태양 빛 에너지를 전기 에너지로 바꾸어주는 장치이다. 태양 빛을 이용하므로 자원의 고갈 위험이 없으며, 인체에 해가 없는 에너지 자원이다.
페로브스카이트 태양전지는 크게 무엇으로 구분되는가? Fig. 2에 나타낸 바와 같이 페로브스카이트 태양전지는 크게 정구조형 페로브스카이트 태양전지와 역구조형 페로브스카이트형 태양전지로 구분된다. 정구조형 페로브스카이트 태양전지는 기판 위에 전자수송층, 페로브스카이트 광활성층, 정공수송층, 전극의 구조로 되어있다.
실리콘 태양전지의 한계점은 무엇인가? 오래전부터 시작한 연구로 인해 많은 성과를 보이는 상태이다. 하지만 값비싼 가격과 어려운 공정 등의 다양한 한계점들로 인해 대체할 방법들이 연구되고 있다. 다양한 방법 중에서도 페로브스카이트 태양전지는 가격이 싸며, 간단한 공정으로 이를 대체할 수 있는 수단이 될 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (109)

  1. Jo, W., Choi, H., Kim, S., Yoo, J., Chun, D., Rhim, Y., Lim, J. and Lee, S., "Changes in Spontaneous Combustion Characteristics of Low-rank Coal Through Pre-oxidation at Low Temperatures," Korean J. Chem. Eng., 32, 255-260(2015). 

  2. Kim, B. S., Kim, T. Y., Park, T. C. and Yeo, Y. K., "Comparative Study of Estimation Methods of NOx Emission with Selection of Input Parameters for a Coal-fired Boiler," Korean J. Chem. Eng., 35, 1779-1790(2018). 

  3. Lu, Q., Ali, Z., Tang, H., Iqbal, T., Arain, Z., Cui, M.-S., Liu, D.-J., Li, W.-Y. and Yang, Y.-P., "Regeneration of Commercial SCR Catalyst Deactivated by Arsenic Poisoning in Coal-fired Power Plants," Korean J. Chem. Eng., 36, 377-384(2019). 

  4. Kim, M., Ye, and Ryu, C., "Effect of Slag Viscosity Model on Transient Simulations of Wall Slag Flow in An Entrained Coal Gasifier," Korean J. Chem. Eng., 35, 1065-1072(2018). 

  5. Yang, F., Yu, Q., Xie, H., Zuo, Z., Hou, L. and Qin, Q., "Comparative Kinetic Study of Coal Gasification with Steam and CO2 in Molten Blast Furnace Slags," Korean J. Chem. Eng., 35, 1626-1635(2018). 

  6. Barati, S., Ghazi, M. M. and Khoshandam, B., "Study of Effective Parameters for the Polarization Characterization of PEMFCs Sensitivity Analysis and Numerical Simulation," Korean J. Chem. Eng., 36, 146-156(2019). 

  7. Joo, D., Han, K., Jang, J. H. and Park, S., "In situ Electrochemical and Mechanical Accelerated Stress Tests of a Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells," Korean J. Chem. Eng., 36, 299-304(2019). 

  8. Park, K., Oh, S.-R. and Won, W., "Techno-economic Optimization of the Integration of An Organic Rankine Cycle Into a Molten Carbonate Fuel Cell Power Plant," Korean J. Chem. Eng., 36, 345-355(2019). 

  9. Ko, H. S., Park, H. W., Kim, G. J. and Lee, J. D., "Electrochemical Characteristics of Lithium-excess Cathode Material ( $Li_{1+x}Ni_{0.9} Co_{0.05}Ti_{0.05}O_2$ ) for Lithium-ion Batteries," Korean J. Chem. Eng., 36, 620-624(2019). 

  10. Chu, C., Kwon, B. W., Lee, W. and Kwon, Y., "Effect of Temperature on the Performance of Aqueous Redox Flow Battery Using Carboxylic Acid Functionalized Alloxazine and Ferrocyanide Redox Couple," Korean J. Chem. Eng., 36, 1372-1379(2019). 

  11. Wang, X., Kim, J. H., Choi, Y. B., Kim, H.-H. and Kim, C.-J., "Fabrication of Optimally Configured Layers of SWCNTs, Gold Nanoparticles, and Glucose Oxidase on ITO Electrodes for High-power Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 1172-1183(2019). 

  12. Yoo, H. M., Lee, J. S., Yang, W. S., Choi, H. S., Jang, H. N. and Seo, Y. C., "Co-gasification Characteristics of Palm Oil by-products and Coals for Syngas Production," Korean J. Chem. Eng., 35, 654-661(2018). 

  13. Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H. and Kim, Y., "Organic Solar Cells Based on Conjugated Polymers : History and Recent Advances," Korean J. Chem. Eng., 31, 1095-1104(2014). 

  14. Berhe, T. A., Su, W. N., Chen, C. H., Pan, C. J., Cheng, J. H., Chen, H. M., Tsai, M. C., Chen, L. Y., Dubale, A. A. and Hwang, B. J., "Organometal Halide Perovskite Solar Cells: Degradation and Stability," Energy Environ. Sci., 9, 323(2016). 

  15. Yoo, I. H., Kalanur, S. S., Eom, K., Ahn, B., Cho, I. S., Yu, H. K., Jeon, H. and Seo, H., "Plasmon-enhanced ZnO Nanorod/AuNPs/ $Cu_2O$ Structure Solar Cells: Effects and Limitations," Korean J. Chem. Eng., 34, 3200-3207(2017). 

  16. Zafar, M., Yun, J. Y. and Kim, D. H., "Highly Stable Inverted Organic Photovoltaic Cells with a $V_2O_5$ Hole Transport Layer," Korean J. Chem. Eng., 34, 1504-1508(2017). 

  17. Cho, H. H., Cho, C. H., Kang, H., Yu, H., Oh, J. H. and Kim, B. J., "Molecular Structure-device Performance Relationship in Polymer Solar Cells Based on Indene-C60 Bis-adduct Derivatives," Korean J. Chem. Eng., 32, 261-267(2015). 

  18. Zafar, M., Yun, J. Y. and Kim, D. H., "Performance of Inverted Organic Photovoltaic Cells with Nitrogen Doped $TiO_2$ Films by Atomic Layer Deposition," Korean J. Chem. Eng., 35, 567-573 (2018). 

  19. Lee, S., Seo, J., Kim, H., Song, D. I. and Kim, Y., "Investigation of Short-term Stability in High Efficiency Polymer: Nonfullerene Solar Cells Via Quick Current-voltage Cycling Method," Korean J. Chem. Eng., 35, 2496-2503(2018). 

  20. Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H. L., Cao, Y. and Chen, Y., "Investigation of Short-term Stability in High Efficiency Polymer: Nonfullerene Solar Cells via Quick Current-voltage Cycling Method," Science 361, 1094-1098(2018). 

  21. Zheng, J., Lau, C. F. J., Mehrvarz, H., Ma, F. J., Jiang, Y., Deng, X., Soeriyadi, A., Kim, J., Zhang, M., Hu, L., Cui, X., Lee, D. S., Bing, J., Cho, Y., Chen, C., Green, M. A., Huang, S., A and Ho-Baillie, W. Y., "Large Area Efficient Interface Layer Free Monolithic Perovskite/homo-junction-silicon Tandem Solar Cell with over 20% Efficiency," Energy Environ. Sci., 11, 2432(2018). 

  22. Quiroz, C. O. R., Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G. D., Heumuller, T., Wilkinson, B., Kirchartz, T., Spiecker, E., Verlinden, P. J., Zhang, X., Green, M. A., Ho-Baillie, A. and Brabec, C. J., "Balancing Electrical and Optical Losses for Efficient 4-terminal Si-perovskite Solar Cells with Solution Processed Percolation Electrodes," J. Mater. Chem. A, 6, 3583(2018). 

  23. Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M. and Heeger, A. J., "Efficient Tandem Polymer Solar Cells Fabricated by All-solution Processing," Science, 317, 222-225(2007). 

  24. You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C. C., Gao, J., Li, G. and Yang, Y., "A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency," Nature Communications, 4, 1446(2013). 

  25. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu and Y. Yan, "Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%," ACS Energy Lett., 3, 305-306(2018). 

  26. Jang, K. I., Hong, E. and Kim, J. H., "Improved Electrochemical Performance of Dye-sensitized Solar Cell via Surface Modifications of the Working Electrode by Electrodeposition," Korean J. Chem. Eng., 30, 620-625(2013). 

  27. Yang, J., Lin, Y. and Meng, Y., "Effects of Dye Etching on the Morphology and Performance of ZnO Nanorod Dye-sensitized Solar Cells," Korean J. Chem. Eng., 30, 2026-2029(2013). 

  28. Park, S., Son, M. K., Kim, S. K., Jeong, M. S., Prabakar, K. and Kim, H. J., "Effects of Dye Etching on the Morphology and Performance of ZnO Nanorod Dye-sensitized Solar Cells," Korean J. Chem. Eng., 30, 2088-2092(2013). 

  29. Umale, S., Sudhakar, V., Sontakke, S. M., Krishnamoorthy, K. and Pandit, A. B., "Improved Efficiency of DSSC Using Combustion Synthesized $TiO_2$ ," Materials Research Bulletin, 109, 222-226(2019). 

  30. Klunder, K. J., Elliott, C. M. and Henry, C. S., "Highly Transparent Tetraaminophthalocyanine Polymer Films for DSSC Cathodes," J. Mater. Chem. A, 6, 2767(2018). 

  31. So, S., Hwang, I., Yoo, J., Mohajernia, S., Mackovic, M., Spiecker, E., Cha, G., Mazare, A. and Schmuki, P., "Inducing a Nanotwinned Grain Structure within the $TiO_2$ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%," Adv. Energy Mater., 8, 1800981(2018). 

  32. Santos, G. C. d., Oliveira, E. F., Lavarda, F. C. and Silva-Filho, L. C. d., "Inducing a Nanotwinned Grain Structure within the $TiO_2$ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%," Journal of Molecular Modeling, 25, 75(2019). 

  33. Aksoy, S., Gorgun, K., Caglar, Y. and Caglar, M., "Effect of Loading and Standbye Time of the Organic Dye N719 on the Photovoltaic Performance of ZnO based DSSC," Journal of Molecular Structure, 1189, 181-186(2019). 

  34. Chu, V. B., Park, S. J., Park, G. S., Jeon, H. S., Hwang, Y. J. and Min, B. K., "Semi-transparent Thin Film Solar Cells by a Solution Process," Korean J. Chem. Eng., 33, 880-884(2016). 

  35. Kim, J. and Shin, H. B., "Effect of Substrate Off-orientation on the Characteristics of GaInP/AlGaInP Single Heterojunction Solar Cells," Korean J. Chem. Eng., 36, 305-311(2019). 

  36. Lee, D. and Yong, K., "Non-vacuum Deposition of CIGS Absorber Films for Low-cost Thin Film Solar Cells," Korean J. Chem. Eng., 30, 1347-1358(2013). 

  37. Truong, N. T. N., Trinh, K. T., Pham, V. T. H., Kim, C. D. and Park, C., "Synthesis and Thermal Annealing Treatment of Octylphosphonic Acid-capped CdSe-tetrapod Nanocrystals for Bulk Hetero-junction Solar Cell Applications," Korean J. Chem. Eng., 32, 761-766(2015). 

  38. Pejjai, B., Reddy, V. R. M., Seku, K., Cho, H., Pallavolu, M. R., Le, T. T. T., Jeong, D. S., Kotte, T. R. R. and Park, C., "Synthesis of Binary Cu-Se and In-Se Nanoparticle Inks Using Cherry Blossom Gum for $CuInSe_2$ Thin Film Solar Cell Applications," Korean J. Chem. Eng., 35, 2430-2441(2018). 

  39. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Ebinger, M. Yoshita and A. W. Y. Ho-Baillie, "Solar cell efficiency tables, J. H. (Version 53)," Prog Photovolt Res Appl., 27, 3-12 (2019). 

  40. Green, M. A., "Thin-film Solar Cells: Review of Materials, Technologies and Commercial Status," J. Mater. Sci. Mater. Electron, 18, S15-S19(2007). 

  41. Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131, 6050-6051(2009). 

  42. Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Gratzel, M. and Park, N. G., "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2, 591(2012). 

  43. Yin, W. J., Yang, J. H., Kang, J., Yan, Y. and Wei, S. H., "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," J. Mater. Chem. A, 3, 8926-8942(2015). 

  44. Elumalai, N., Mahmud, M., Wang, D. and Uddin, A., "Perovskite Solar Cells: Progress and Advancements," Energies, 9, 861(2016). 

  45. Song, Z., Watthage, S. C., Phillips, A. B. and Heben, M. J., "Pathways Toward High-performance Perovskite Solar Cells: Review of Recent Advances in Organo-metal Halide Perovskites for Photovoltaic Applications," J. of Photonics for Energy, 6, 022001 (2016). 

  46. Green, M. A., Ho-Baillie, A. and Snaith, H. J., "The Emergence of Perovskite Solar Cells," Nature Photonics, 8, 506-514(2014). 

  47. Xu, Z., Teo, S. H., Gao, L., Guo, Z., Kamata, Y., Hayase, S. and Ma, T., "La-doped $SnO_2$ as ETL for Efficient Planar-structure Hybrid Perovskite Solar Cells," Organic Electronics, (2019). 

  48. Shin, S. S., Suk, J. H., Kang, B. J., Yin, W., Lee, S. J., Noh, J. H., Ahn, T. K., Rotermund, F., Cho, I. S. and Seok, S. L., "Energy-level Engineering of the Electron Transporting Layer for Improving Open-circuit Voltage in Dye and Perovskite-based Solar Cells," Energy Environ. Sci., 12, 958(2019). 

  49. Xia, F., Wu, Q., Zhou, P., Li, Y., Chen, X., Liu, Q., Zhu, J., Dai, S., Lu, Y. and Yang, S., "Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer," ACS Appl. Mater. Interfaces, 7, 13659-13665(2015). 

  50. Tan, H., Jain, A., Voznyy, O., Lan, X., Arquer, F. P. G. d., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z. H., Yang, Z., Hoogland, S. and Sargent, E. H., "Efficient and Stable Solution-processed Planar Perovskite Solar Cells via Contact Passivation," Science, 355, 722-726(2017). 

  51. Kermanpur, E. H. A. A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Gratzel, M., Hagfeldt, A. and Correa- Baena, J. P., "Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-processed Tin Oxide," Energy Environ. Sci., 9, 3128(2016). 

  52. Seo, J. Y., Uchida, R., Kim, H. S., Saygili, Y., Luo, J., Moore, C., Kerrod, J., Wagstaff, A., Eklund, M., McIntyre, R., Pellet, N., Zakeeruddin, S. M., Hagfeldt, A. and Gratzel, M., "Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous $TiO_2$ Beads as Electron-Selective Contact," Adv. Funct. Mater., 28, 1705763(2018). 

  53. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S. and Liu, S. F., "High Efficiency Planar-type Perovskite Solar Cells with Negligible Hysteresis Using EDTAcomplexed $SnO_2$ ," Nature Communications, 9, 3239(2018). 

  54. Gong, X., Sun, Q., Liu, S., Liao, P., Shen, Y., Gratzel, C., Zakeeruddin, S. M., Gratzel, M. and Wang, M., "Highly Efficienct Perovskite Solar Cells with Gradient Bilayer Electron Transprot Materails," Nano Lett., 18, 3969-3977(2018). 

  55. Singh, R., Giri, A., Pal, M., Thiyagarajan, K., Kwak, J., Lee, J. J., Jeong, U. and Cho, K., "Perovskite Solar Cells with an $MoS_2$ Electron Transport Layer," J. Mater. Chem. A, 7, 7151-7158(2019). 

  56. Pulvirenti, F., Wegner, B., Noel, N. K., Mazzotta, G., Hill, R., Patel, J. B., Herz, L. M., Johnston, M. B., Riede, M. K., Snaith, H. J., Koch, N., Barlow, S. and Marder, S. R., "Modification of the Fluorinated Tin Oxide/electron-transporting Material Interface by a Strong Reductant and Its Effect on Perovskite Solar Cell Efficiency," Mol. Syst. Des. Eng., 3, 741-747(2018). 

  57. Anaraki, E. H., Kermanpur, A., Mayer, M. T., Steier, L., Ahmed, T., Turren Cruz, S. H. L., Seo, J. Y., Luo, J., Zakeeruddin, S. M., Tress, W., Edvinsson, T., Gratzel, M., Hagfeldt, A. and Correa-Baena, J. P., "Low-Temperature Nb-Doped $SnO_2$ Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells," ACS Energy Lett., 3, 773-778(2018). 

  58. Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., Shin, H. W., Seok, S. I., Lee, J. and Seo, J., "A Fluorene-terminated Hole-transporting Material for Highly Efficient and Stable Perovskite Solar Cells," Nature Energy, 3, 682-689(2018). 

  59. Kim, Y. C., Yang, T. Y., Jeon, N. J., Im, J., Jang, S., Shin, T. J., Shin, H. W., Kim, S., Lee, E., Kim, S., Noh, J. H., Seok, S. I. and Seo, J., "Engineering Interface Structures Between Lead Halide Perovskite and Copper Phthalocyanine for Efficient and Stable Perovskite Solar Cells," Energy Environ. Sci., 10, 2109-2116(2017). 

  60. Zhang, L., Zhou, X., Zhong, X., Cheng, C., Tian, Y. and Xu, B., "Hole-transporting Layer Based on a Conjugated Polyelectrolyte with Organic Cations Enables Efficient Inverted Perovskite Solar Cells," Nano Energy, 57, 248-255(2019). 

  61. Wang, K. C., Jeng, J. Y., Shen, P. S., Chang, Y. C., Diau, E. W. G., Tsai, C. H., Chao, T. Y., Hsu, H. C., Lin, P. Y., Chen, P., Guo, T. F. and Wen, T. C., "P-type Mesoscopic Nickel Oxide/organometallic Perovskite Heterojunction Solar Cells," Scientific Reports, 4, 4756(2014). 

  62. Rakstys, K., Paek, S., Gao, P., Gratia, P., Marszalek, T., Grancini, G., Cho, K. T., Genevicius, K., Jankauskas, V., Pisula, W. and Nazeeruddin, M. K., "Molecular Engineering of Face-on Oriented Dopant-free Hole Transporting Material for Perovskite Solar Cells with 19% PCE," J. Mater. Chem. A, 5, 7811(2017). 

  63. Christians, J. A., Schulz, P., Tinkham, J. S., Schloemer, T. H., Harvey, S. P., Villers, B. J. T. d., Sellinger, A., Berry, J. J. and Luther, J. M., "Tailored Interfaces of Unencapsulated Perovskite Solar Cells for > 1,000 hour Operational Stability," Nature Energy, 3, 68-74(2018). 

  64. Nie, W., Tsai, H., Blancon, J. C., Liu, F., Stoumpos, C. C., Traore, B., Kepenekian, M., Durand, O., Katan, C., Tretiak, S., Crochet, J., Ajayan, P. M., Kanatzidis, M. G., Even, J. and Mohite, A. D., "Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide," Adv. Mater., 30, 1703879(2018). 

  65. Mali, S. S. and Hong, C. K., "p-i-n/n-i-p Type Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells Towards Improved Air Stability: Synthetic Strategies and the role of p-type Hole Transport Layer (HTL) and n-type Electron Transport Layer (ETL) Metal Oxides," Nanoscale, 8, 10528(2016). 

  66. Tavakoli, M. M., Tress, W., Mili?, J. V., Kubicki, D., Emsley, L. and Gratzel, M., "Addition of Adamantylammonium Iodide to Hole Transport Layers Enables Highly Efficient and Electroluminescent Perovskite Solar Cells," Energy Environ. Sci., 11, 3310 (2018). 

  67. Chen, W., Zhou, Y., Wang, L. G., Wu, Y., Tu, B., Yu, B., Liu, F., Tam, H. W., Wang, G., Djurisic, A. B., Huang, L. and He, Z., "Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell," Adv. Mater., 30, 1800515(2018). 

  68. Yu, J. C., Hong, J. A., Jung, E. D., Kim, D. B., Baek, S. M., Lee, S., Cho, S., Park, S. S., Choi, K. J. and Song, M. H., "Highly Efficient and Stable Inverted Perovskite Solar Cell Employing PEDOT: GO Composite Layer as a Hole Transport Layer," Scientific Reports, 8, 1070(2018). 

  69. Calio, L., Salado, M., Kazim, S. and Ahmad, S., "A Generic Route of Hydrophobic Doping in Hole Transporting Material to Increase Longevity of Perovskite Solar Cells," Joule, 2, 1800-1815 (2018). 

  70. Bruijnaers, B. J., Schiepers, E., Weijtens, C. H. L., Meskers, S. C. J., Wienk, M. M. and Janssen, R. A. J., "The Effect of Oxygen on the Efficiency of Planar p-i-n Metal Halide Perovskite Solar Cells with a PEDOT: PSS Hole Transport Layer," J. Mater. Chem. A, 6, 6882(2018). 

  71. Wu, W. Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A. and Huang, J., "Molecular Doping Enabled Scalable Blading of Efficient Hole-transport-layer-free Perovskite Solar Cells," Nature Communications, 9, 1625(2018). 

  72. Mali, S. S., Kim, H., Kim, H. H., Shim, S. E. and Hong, C. K., "Nanoporous p-type NiOx Electrode for Pin Inverted Perovskite Solar Cell Toward Air Stability," Materials Today, 21, 483-500 (2018). 

  73. Zhang, J., Xu, B., Yang, L., Ruan, C., Wang, L., Liu, P., Zhang, W., Vlachopoulos, N., Kloo, L., Boschloo, G., Sun, L., Hagfeldt, A. and Johansson, E. M. J., "The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency," Adv. Energy Mater., 8, 1701209(2018). 

  74. Domanski, K., Correa-Baena, J. P., Mine, N., Nazeeruddin, M. K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A. and Gratzel, M., "The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency," ACS Nano, 10, 6306-6314(2016). 

  75. Baranwal, A. K., Kanaya, S., Peiris, T. A. N., Mizuta, G., Nishina, T., Kanda, H., Miyasaka, T., Segawa, H. and Ito, S., "100 C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes," ChemSusChem, 9, 2604-2608(2016). 

  76. Yang, M., Li, J., Li, J., Yuan, Z., Zou, J., Lei, G., Zhao, L., Wang, X., Dong, B. and Wang, S., "High Efficient and Long-time Stable Planar Heterojunction Perovskite Solar Cells with Doctor-bladed Carbon Electrode," Journal of Power Sources, 424, 61-67(2019). 

  77. Aitola, K., Domanski, K., Correa-Baena, J. P., Sveinbjornsson, K., Saliba, M., Abate, A., Gratzel, M., Kauppinen, E., Johansson, E. M. J., Tress, W., Hagfeldt, A. and Boschloo, G., "High Efficient and Long-time Stable Planar Heterojunction Perovskite Solar Cells with Doctor-bladed Carbon Electrode," Adv. Mater., 29, 1606398 (2017). 

  78. Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G. F., Watts, J. F., Xu, Z., Liu, T., Chen, K., Ye, F., Wu, P., Zhao, L., Wu, J., Tu, Y., Zhang, Y., Yang, X., Zhang, W., Friend, R. H., Gong, Q., Snaith, H. J. and Zhu, R., "Enhanced Photovoltage for Inverted Planar Heterojunction Perovskite Solar Cells," Science, 360, 1442-1446(2018). 

  79. Nouri, E., Mohammadi, M. R. and Lianos, P., "Improving the Stability of Inverted Perovskite Solar Cells Under Ambient Conditions with Graphene-based Inorganic Charge Transporting Layers," Carbon, 126, 208-214(2018). 

  80. Cai, Y., Zhang, Z., Zhou, Y., Liu, H., Qin, Q., Lu, X., Gao, X., Shui, L., Wu, S. and Liu, J., "Enhancing the Efficiency of Lowtemperature Planar Perovskite Solar Cells by Modifying the Interface Between Perovskite and Hole Transport Layer with Polymers," Electrochimica Acta, 261, 445-453(2018). 

  81. Kim, Y. Y., Park, E. Y., Yang, T. Y., Noh, J. H., Shin, T. J., Jeona, N. J. and Seo, J., "Fast Two-step Deposition of Perovskite via Mediator Extraction Treatment for Large-area, High-performance Perovskite Solar Cells," J. Mater. Chem. A., 6, 12447(2018). 

  82. Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Liu, C., Ahmad, W., Chen, Z. D. and Li, S., "Perovskite Solar Cells with ZnO Electron-transporting Materials," Adv. Mater., 30, 1703737(2018). 

  83. Song, Z., Abate, A., Watthage, S. C., Liyanage, G. K., Phillips, A. B., Steiner, U., Graetzel, M. and Heben, M. J., "Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the $PbI_2-CH_3NH_3I-H_2O$ System," Adv. Energy Mater., 6, 1600846 (2016). 

  84. Rong, Y., Hu, Y., Mei, A., Tan, H., Saidaminov, M. I., Seok, S. I., McGehee, M. D., Sargent, E. H. and Han, H., "Challenges for Commercializing Perovskite Solar Cells," Science, 361, 1214(2018). 

  85. Son, D. Y., Kim, S. G., Seo, J. Y., Lee, S. H., Shin, H., Lee, D. and Park, N. G., "Universal Approach Toward Hysteresis-free Perovskite Solar Cell via Defect Engineering," J. Am. Chem. Soc., 140, 1358-1364(2018). 

  86. Jung, H. S. and Park, N. G., "Perovskite Solar Cells: From Materials to Devices," Small, 11, 10-25(2015). 

  87. Turren-Cruz, S. H., Saliba, M., Mayer, M. T., Juarez-Santiesteban, H., Mathew, X., Nienhaus, L., Tress, W., Erodici, M. P., Sher, M. J., Bawendi, M. G., Gratzel, M., Abate, A., Hagfeldt, A. and Correa-Baena, J. P., "Enhanced Charge Carrier Mobility and Lifetime Suppress Hysteresis and Improve Efficiency in Planar Perovskite Solar Cells," Energy Environ. Sci., 11, 78(2018). 

  88. Singh, T. and Miyasaka, T., "Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient air Under Controlled Humidity," Adv. Energy Mater., 8, 1700677(2018). 

  89. Turren-Cruz, S. H., Hagfeldt, A. and Saliba, M., "Methylammoniumfree, High-performance and Stable Perovskite Solar Cells on a Planar Architecture," Science, 362, 449-453(2018). 

  90. Gong, J., Yang, M., Rebollar, D., Rucinski, J., Liveris, Z., Zhu, K. and Xu, T., "Divalent Anionic Doping in Perovskite Solar Cells for Enhanced Chemical Stability," Adv. Mater., 1800973(2018). 

  91. Zhao, W., Yao, Z., Yu, F., Yang, D. and Liu, S. F., "Alkali Metal Doping for Improved $CH_3NH_3PbI_3$ Perovskite Solar Cells," Adv. Sci., 5, 1700131(2018). 

  92. Jiang, J., Wang, Q., Jin, Z., Zhang, X., Lei, J., Bin, H., Zhang, Z. G., Li, Y. and Liu, S. F., "Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability," Adv. Energy Mater., 8, 1701757(2018). 

  93. Tavakoli, M. M., Bi, D., Pan, L., Hagfeldt, A., Zakeeruddin, S. M. and Gratzel, M., "Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States," Adv. Energy Mater., 8, 1800275(2018). 

  94. Yu, J. C., Badgujar, S., Jung, E. D., Singh, V. K., Kim, D. W., Gierschner, J., Lee, E. G., Kim, Y. S., Cho, S., Kwon, M. S. and Song, M. H., "Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive," Adv. Mater., 31, 1805554(2019). 

  95. Soe, C. M. M., Nie, W., Stoumpos, C. C., Tsai, H., Blancon, J. C., Liu, F., Even, J., Marks, T. J., Mohite, A. D. and Kanatzidis, M. G., "Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden-Popper Perovskites for high-efficiency Solar Cells," Adv. Energy Mater., 8, 1700979(2018). 

  96. Kim, M., Motti, S. G., Sorrentino, R. and Petrozza, A., "Enhanced Solar Cell Stability by Hygroscopic Polymer Passivation of Metal Halide Perovskite Thin Film," Energy Environ. Sci., 11, 2609(2018). 

  97. Hwang, I., Jeong, I., Lee, J., Ko, M. J. and Yong, K., "Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation," ACS Appl. Mater. Interfaces, 7, 17330-17336(2015). 

  98. Lin, J., Lai, M., Dou, L., Kley, C. S., Chen, H., Peng, F., Sun, J., Lu, D., Hawks, S. A., Xie, C., Cui, F., Alivisatos, A. P., Limmer, D. T. and Yang, P., "Thermochromic Halide Perovskite Solar Cells," Nature Materials, 17, 261-267(2018). 

  99. Tsai, H., Asadpour, R., Blancon, J. C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W. and Mohite, A. D., "Light-induced Lattice Expansion Leads to High-efficiency Perovskite Solar Cells," Science, 360, 67-70(2018). 

  100. Bu, X., Westbrook, R. J. E., Lanzetta, L., Ding, D., Chotchuangchutchaval, T., Aristidou, N. and Haque, S. A., "Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells," Sol. RRL, 3, 1800282(2019). 

  101. Matsui, T., Yokoyama, T., Negami, T., Sekiguchi, T., Saliba, M., Gratzel, M. and Segawa, H., "Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells," Chem. Lett., 47, 814-816(2018). 

  102. Ke, W. and Kanatzidis, M. G., "Prospects for Low-toxicity Leadfree Perovskite Solar Cells," Nature Communications 10, (2019). 

  103. Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A., Sadhanala, A., Eperon, G. E., Pathak, S. K., Johnston, M. B., Petrozza, A., Herza, L. M. and Snaith, H. J., "Lead-free Organic-inorganic Tin Halide Perovskites for Photovoltaic Applications," Energy Environ. Sci., 7, 3061(2014). 

  104. Nie, R., Mehta, A., Park, B. W., Kwon, H. W., Im, J. and Seok, S. I., "Mixed Sulfur and Iodide-based Lead-free Perovskite Solar Cells," J. Am. Chem. Soc., 140, 872-875(2018). 

  105. Song, T. B., Yokoyama, T., Stoumpos, C. C., Logsdon, J., Cao, D. H., Wasielewski, M. R., Aramaki, S. and Kanatzidis, M. G., "Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-based Perovskite Solar Cells," J. Am. Chem. Soc., 139, 836-842(2017). 

  106. Ito, N., Kamarudin, M. A., Hirotani, D., Zhang, Y., Shen, Q., Ogomi, Y., Iikubo, S., Minemoto, T., Yoshino, K. and Hayase, S., "Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air," J. Phys. Chem. Lett., 9, 1682-1688(2018). 

  107. Liao, W., Zhao, D., Yu, Y., Grice, C. R., Wang, C., Cimaroli, A. J., Schulz, P., Meng, W., Zhu, K., Xiong, R. G. and Yan, Y., "Leadfree Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%," Adv. Mater., 28, 9333-9340(2016). 

  108. Chen, M., Ju, M. G., Garces, H. F., Carl, A. D., Ono, L. K., Hawash, Z., Zhang, Y., Shen, T., Qi, Y., Grimm, R. L., Pacifici, D., Zeng, X. C., Zhou, Y. and Padture, N. P., "Highly Stable and Efficient All-inorganic Lead-free Perovskite Solar Cells with Native-oxide Passivation," Nature Communications 10, (2019). 

  109. Shao, S., Liu, J., Portale, G., Fang, H. H., Blake, G. R., Brink, G. H. T., Koster, L. J. A. and Loi, M. A., "Highly Reproducible Sn-based Hybrid Perovskite Solar Cells with 9% Efficiency," Adv. Energy Mater., 8, 1702019(2018). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로