$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material 원문보기

대한화학회지 = Journal of the Korean Chemical Society, v.64 no.6, 2020년, pp.354 - 359  

Lee, Min-Jae (Department of Optometry & Vision Science, Daegu Catholic University) ,  Lee, Kyungmun (Devision of Research & Development, Vision Science Co., Ltd.) ,  Sung, A-Young (Department of Optometry & Vision Science, Daegu Catholic University)

Abstract AI-Helper 아이콘AI-Helper

This research was conducted to analyze the compatibility of used monomers and produce the high functional contact lens material containing silicone monomers. Silicone monomer (Sil-OH), Trimethylsilylmethacrylate (TSMA) were used as additives for the basic combination of Polyhedral Oligomeric Silsesq...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on POSS, silicone monomer (Sil-OH) and trimethylsilylmethacrylate (TSMA) were added as additives by ratio, and then polymerized through a thermal polymerization method. After measuring and evaluating the physical properties of the contact lens produced through the cast mold technique, the compatibility of POSS and the organic groups was evaluated to assess the usability of the lens material.
  • For the polymerization of a highly oxygen-permeable lens material, mixtures were prepared by adding POSS at a 1~10% ratio to the basic combination of DMA, MMA, MA, EGDMA, and AIBN, and the samples prepared as such were named P1, P3, P5, P7, and P10, respectively. To optimize the shape of the lens while maintaining its basic properties, the P10 sample, which had the best oxygen permeability, was selected, and Sil-OH and TSMA were added at a rate of 10, 30, 50, and 100%, respectively.
  • In the experiment in this study, POSS was intended to be grafted onto a highly oxygen-permeable hydrogel lens material by utilizing a material that has excellent gas permeability and improved mechanical properties. Based on POSS, silicone monomer (Sil-OH) and trimethylsilylmethacrylate (TSMA) were added as additives by ratio, and then polymerized through a thermal polymerization method.
  • The optical transmittance, refractive index, water content, wettability, oxygen permeability, eluate, and differential scanning calorimetry (DSC) of the produced polymers were measured to analyze the optical, physical, and thermal properties. The relationships between the refractive index and the water content, the contact angle and the water content, and the oxygen permeability and the water content were compared.
  • To optimize the shape of the lens while maintaining its basic properties, the P10 sample, which had the best oxygen permeability, was selected, and Sil-OH and TSMA were added at a rate of 10, 30, 50, and 100%, respectively. The prepared samples were then named PS10, PS30, PS50, PS100, PT10, PT30, PT50, and PT100, respectively.

대상 데이터

  • and synthesized Sil-OH were used, while for TSMA and N, N-dimethylacrylamide (DMA), TCI products were selected. For methyl methacrylate (MMA), methyl acrylate (MA), and azobisisobutyronitrile (AIBN), Junsei products were selected. For the crosslinking agent, ethylene glycol dimethacrylate (EGDMA), Sigma-Aldrich products were selected.
  • For methyl methacrylate (MMA), methyl acrylate (MA), and azobisisobutyronitrile (AIBN), Junsei products were selected. For the crosslinking agent, ethylene glycol dimethacrylate (EGDMA), Sigma-Aldrich products were selected. The molecular weight of Sil-OH was 2165 Mw and the viscosity was measured as 40.
  • For the hydrogel lens material that was used in the experiment, POSS from Hybrid Plastics Co. and synthesized Sil-OH were used, while for TSMA and N, N-dimethylacrylamide (DMA), TCI products were selected. For methyl methacrylate (MMA), methyl acrylate (MA), and azobisisobutyronitrile (AIBN), Junsei products were selected.
  • To optimize the shape of the lens while maintaining its basic properties, the P10 sample, which had the best oxygen permeability, was selected, and Sil-OH and TSMA were added at a rate of 10, 30, 50, and 100%, respectively. The prepared samples were then named PS10, PS30, PS50, PS100, PT10, PT30, PT50, and PT100, respectively. The stirring solution was mixed for 60 minutes after mixing according to the mixing ratio, and for polymer polymerization, each sample was heat-treated in an oven at 135℃ for 120 minutes.

이론/모형

  • The refractive indices of the prepared hydrophilic hydrogel lenses were measured based on ISO 18396-4:2006 using an ABBE refractometer (ATAGO DR-A1, Japan), and were measured five times per sample, respectively, and an average value was used. The water content was measured based on ISO 1869-4:2006 using the gravimetric method, and were measured five times per sample, respectively, and an average value was used. The weights of the dried and watercontaining samples were measured using an electronic balance (XS205 DualRange, METTLER TOLEDO) and were then calculated using the corresponding calculation formula.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Davies, B. L.; Samoc, M.; Woodruff, M. Chem. Mater. 1996, 8, 2586. 

  2. Harmer, M. A.; Farneth, W. E.; Sun, Q. J. J. Am. Chem. Soc. 1996, 118, 7708. 

  3. Yoshida, M.; Prasad, P. N. Applied Optics 1996, 35, 1500. 

  4. Scott, D. W. J. Am. Chem. Soc. 1946, 68, 356. 

  5. Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.; Kieser, K. M.; Krantz, K. E. J. Am. Chem. Soc. 1960, 82, 6194. 

  6. Li, G.; Wang, L.; Ni, H.; Pittman, C. U. J. Inorg. Organomet. Polym. 2001, 11, 123. 

  7. Phillips, S. H.; Haddad, T. S.; Tomezak, S. J. Curr. Opin. Solid Sate. Mat. Sci. 2004, 8, 21 

  8. Fesh, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741. 

  9. Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302. 

  10. Li, G. Z.; Ye, M. L.; Shi, L. H. Chin. J. Polym. Sci. 1994, 12, 331. 

  11. Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302. 

  12. Li, G. Z.; Ye, M. L.; Shi, L. H. Chin. J. Polym. Sci. 1996, 14, 41. 

  13. Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D. J. Polym. Sci. Polym. Phys. 1998, 36, 1857. 

  14. Fu, B. X.; Gelfer, M. Y.; Hsiao, B. S.; Phillips, S.; Viers, B.; Blansky, R. Polymer 2003, 44, 1499 (2003). 

  15. Joshi, M.; Butola, B. S. Polymer 2004, 45, 4953. 

  16. Teo, J. K. H.; Teo, K. C.; Pan, B.; Xiao, Y.; Lu, X. Polymer 2007, 48, 5671. 

  17. Kim, T. H.; Ye, K. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53, 755. 

  18. Lee, M. J.; Sung, A. Y.; Kim, T. H. J. Korean Ophthalmic Opt. Soc. 2014, 19, 43. 

  19. Nicolson, P. C.; Vogt, J. Biomaterials 2001, 22, 3273. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로