$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식품 폐기물을 이용한 친환경 생촉매의 발굴과 인디고 환원에 응용
Utilization of Food Waste Extract as an Eco-friendly Biocatalyst for Indigo Reduction 원문보기

韓國染色加工學會誌 = Textile coloration and finishing, v.32 no.4, 2020년, pp.193 - 198  

손경희 (전남대학교 의류학과) ,  류동일 (전남대학교 고분자공학부) ,  신윤숙 (전남대학교 의류학과)

Abstract AI-Helper 아이콘AI-Helper

In this study, the validity of extracts from food waste as biocatalyst for indigo reduction was examined. Dried food wastes such as apple peel and corn waste were water-extracted and freeze-dried. The reducing power of extracts for indigo was evaluated by the oxidation-reduction potential(ORP) measu...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 사과와 옥수수의 폐기된 부분을 활용하여 인디고의 환원제로서 유효성을 조사하였다. 식품 폐기물은 건조 후 증류수로 100℃에서 1시간 동안 추출, 농축하여 분말로 만들어 사용하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. A. Nzihou, Toward the Valorization of Waste and Biomass, Waste and Biomass Valorization, 1(1), 3(2010). 

  2. R. Ma, M. Guo, and X. Zhang, Selective Communication of Biorefinery Lignin into Dicarboxylic Acid, ChemSusChem, 7(2), 412(2014). 

  3. T. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, Food Waste-to-energy Conversion Technologies: Current Status and Future Direction, Waste Management, 38, 399(2015). 

  4. Y. Lee, S. Kwak, and J. Jang, Improvement in the Color Fastness of Cotton Fabrics Dyed with Kale-extracted Colorants, Textile Coloration and Finishing, 31(4), 225(2019). 

  5. G. Lee and Y. Shin, Eco-friendly Leather Dyeing Usinf Biomass Wastes(III): Imparting Functionality by Combination Dyeing with Marigold(Tagetes erecta L.) and Hinoki Cypress(Chamaecyparis obtusa) Leaves Extracts, Textile Coloration and Finishing, 31(1), 1(2019). 

  6. C. Fritsch, A. Staebler, A. Happel, M. A. C. Marquez, I. Aguilo-Aguayo, M. Abadias, M. Gallur, I. M. Cigognini, A. Montanari, M. J. Lopez, F. Suarez-Estrella, N. Brunton, E. Luengo, L. Sisti, and M. Ferri, Processing, Valorization and Application of Bio-waste Derived Compounds from Potato, Tomato, Olive and Cereals: a Review, Sustainability, 9, 1(2017). 

  7. B. Ozturk, C. Parkinson, and M. Gozalez-Miquel, Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents, Separation and Purification Technology, 206, 1(2018). 

  8. D. I. Yoo and Y. Shin, Application of Persimmon (Diospyros kaki L.) Peel Extract in Indigo Dyeing as an Eco-friendly Alternative Reductant, Fashion and Textiles, 7, 28(2014). 

  9. Y. Shin, M. Choi, and D. I. Yoo, Eco-friendly Indigo Reduction Using Bokbunja(Rubus coreanus Miq.) Sludge, Fashion and Textiles, 1, 6(2014). 

  10. Y. Shin, M. Choi, and D. I. Yoo, Utilization of Fruit By-products for Organic Reducing Agent in Indigo Dyeing, Fibers and Polymers, 14(12), 2027(2013). 

  11. Y. Shin, K. Son, and D. I. Yoo, Indigo Dyeing onto Ramie Fabric via Microbial Reduction: Reducing Power Evaluation of Some Bacterial Strains Isolated from Fermented Indigo Vat, Fibers and Polymers, 17(7), 1000(2016). 

  12. Y. Shin, K. Son, and D. I. Yoo, Using Saccharomyces cerevisiae Strains as Biocatalyst for Indigo Reduction, Fibers and Polymers, 20(1), 80(2019). 

  13. Y. Shin, K. Son, and D. I. Yoo, Developing an Eco-Friendly Indigo Dyeing System by Using Baker's Yeast(Saccharomyces Cerevisiae): Some Variables Related to pH Control and Scale-Up, Fibers and Polymers, 21(8), 1790(2020). 

  14. L. Saikhao, J. Settjayanond, T. Karpkird, T. Betchtold, and P. Suwanruji, Green Reducing Agents for Indigo Dyeing on Cotton Fabrics, Journal of Cleaner Production, 197, 106(2018). 

  15. M. Abadelileh, A. P. Manian, D. Rhomberg, M. B. Ticha, N. Meksi, N. A. Aguayo, and T. Bechtold, Calcium-iron-D-gluconate Complexes for the Indirect Cathodic Reduction of Indigo in Denim Dyeing: A Greener Alternative to Non-regenerable Chemicals, Journal of Cleaner Production, 266, 121753(2020). 

  16. X. Li, K. Wang, M. Wang, W. Zhang, J. Yao, and S. Komarneni, Sustainable Electrochemical Dyeing of Indigo with Fe(II)-based Complexes, Journal of Cleaner Production, 276, 123251(2020). 

  17. M. S. Blois, Antioxidant Determination by the Use of a Stable Free Radical, Nature, 181, 1199(1958). 

  18. S. Pruksasri, B. Lanner, and S. Novalin, Nanofiltration as a Potential Process for the Reduction of Sugar in Apple Juices on an Industrial Scale, LWT-Food Science and Technology, 133, 110118(2020). 

  19. R. S. Blackburn and A. Harvey, Green Chemistry Methods in Sulfur Dyeing: Application of Various Reducing D-sugars and Analysis of the Importance of Optimum Redox Potential, Environmental Science and Technology, 38, 4034(2004). 

  20. N. Meksi, M. B. Ticha, M. Kechida, and M. F. Mhenni, Using of Ecofriendly α-hydroxycarbonyls as Reducing Agents to Replace Sodium Dithionite in Indigo Dyeing Processes, Journal of Cleaner Production, 24, 149(2012). 

  21. A. Vuorema, P. John, M. Keskitalo, M. F. Mahon, M. A. Kulandainathand, and F. Marken, Anthraquinone Catalysis in the Glucose-driven Reduction of Indigo to Leuco-indigo, Physical Chemistry Chemical Physics, 11, 1816(2009). 

  22. H. Zabed, G. Faruq, A. N. Boyce, J. N. Sahu, and P. Ganesan, Evaluation of High Sugar Containing Corn Genotypes as Viable Feedstocks for Decreasing Enzyme Consumption During Dry-grind Ethanol Production, Journal of the Taiwan Institute of Chemical Engineers, 58, 467(2016). 

  23. M. B. Arnao, Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: a Practical Case, Trends Food Science and Technology, 11, 419(2000). 

  24. L. Fu, X. R. Xu, R. Y. Gan, Y. Zhang, E. Q. Xia, and H. B. Li, Antioxidant Capacities and Total Phenolic Contents of 62 Fruits, Food Chemistry, 129(215), 345(2011). 

  25. I. Yoon, J. H. Wee, J. H. Moon, T. H. Ahn, and K. H. Park, Isolation and Identification of Quercetin with Antioxidative Activity from the Fruits of Rubus Coreanum Miquel, Korean Journal of Food Science and Technology, 35, 499(2003). 

  26. B. Lata, A. Trampszynska, and J. Paczesna, Cultivar Variation in Apple Peel and Whole Fruit Phenolc Composition, Scientia Horticulturae, 121, 176(2009). 

  27. M. M. Petkovsek, F. Stampar, and R. Veberic, Parameters of Inner Quality of the Apple Scab Resistant and Susceptible Apple Cultivars(Malus domestica Borkh.), Scientia Horticulturae, 114, 37(2007). 

  28. M. Bozic and V. Kokol, Ecological Alternatives to the Reduction and Oxidation Processes in Dyeing with Vat and Sulphur Dyes, Dyes and Pigments, 76, 299(2008). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로