$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석
Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.36 no.6, 2020년, pp.508 - 520  

박형석 (한국수자원공사 K-water연구원) ,  정세웅 (충북대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric...

주제어

표/그림 (13)

참고문헌 (38)

  1. Arhonditsis, G., Neumann, A. G., Shimoda, Y., Kim, D. K., Dong, F., Onandia, G., Yang, C., Javed, A., Brady, M., Visha, A., Ni, F., and Cheng, V. (2019). Castles built on sand or predictive limnology in action? Part A: Evaluation of an integrated modelling framework to guide adaptive management implementation in lake Erie, Ecological Informatics, 53, 100968. 

  2. Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R., Anderegg, W., Cooper, L. A., DeGrandpre, M., Tans, P. P., Miller, J. B., Alden, C., and White, J. W. C. (2015). Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty, Biogeosciences, 12, 2565-2584. 

  3. Bastien, J., Demarty, M., and Tremblay, A. (2011). CO 2 and CH 4 diffusive and degassing fluxes from 2003 to 2009 at Eastmain 1 reservoir, Quebec, Canada, Inland Waters, 1(2), 113-123. 

  4. Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J. (2009). The boundless carbon cycle, Nature Geoscience, 2, 598-600. 

  5. Beaulieu, J. J., Nietch, C. T., and Young, J. L. (2014). Controls on nitrous oxide production and consumption in reservoirs of the Ohio river basin, Journal of Geophysical Research: Biogeosciences, 120, 1995-2010. 

  6. Bocaniov, S. A., Smith, R. E. H., Spillman, C. M., Hipsey, M. R., and Leon, L. F. (2014). The near-shore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: insights from a three-dimensional lake model, Hydrobiologia, 731, 151-172. 

  7. Chung, S. W. and Oh, J. K. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in monsoon climate area, Water Science and Technology, 54(12), 29-37. 

  8. Chung, S. W., Oh, J. G., and Ko, I. H. (2005). Simulations of temporal and spatial distributions of rainfall-induced turbidity flow in a reservoir using CE-QUAL-W2, Journal of Korea Water Resources Association, 38(8), 655-664. [Korean literature] 

  9. Chung, S. W., Park, J. H., Kim, Y. K., and Yoon, S. W. (2007). Application of CE-QUAL-W2 to Daecheong reservoir for eutrophication simulation, Journal of Korean Society on Water Environment, 23(1), 52-63. [Korean literature] 

  10. Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes, Science, 265, 1568-1570. 

  11. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 171-184. 

  12. Cole, T. M. and Tillman, D. H. (1999). Water quality modeling of lake Monroe using CE-QUAL-W2, Environmental Science, Oxford: Elsevier. 

  13. Cole, T. M. and Tillman, D. H. (2001). Water quality modeling of Allatoona and West point reservoir using CE-QUAL-W2, U.S. Army Corps of Engineers. 

  14. Cole, T. M. and Wells, S. A. (2017). CE-QUAL-W2: a two-dimensional, later ally averaged, hydrodynamic and water quality model, Version 4.1 User Manual, Department of Civil and Environmental Engineering, Potland University. 

  15. Curtarelli, M. P., Ogashawara, I., Araujo, C. A. S., Lorenzzetti, J. A., Leao, J. A. D., Alcantara, E., and Stech, J. L. (2016). Carbon dioxide emissions from Tucurui reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations, Science of Total Environment, 551-552, 676-694. 

  16. Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., Bezerra-neto, J. F., Powers, S. M., Santos, M., and Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis, Bioscience, 66(11), 949-964. 

  17. DelSontro, T., Beaulieu, J. J., and Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change, Limnology and Oceanography letters, 3(3), 64-75. 

  18. Demarty, M., Bastien, J., and Tremblay, A. (2011). Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Quebec, Canada, Biogeosciences, 8, 41-53. 

  19. Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T., and Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochemical Cycles, 22, GB1018. 

  20. Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wuest, A., MacIntyre, S., and Chapin, F. S. (2003). CO 2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing, Journal of Geophysical Research: Atmospheres, 108, 4362 

  21. Gelda, R. K., Auer, M. T., Effler, S. W., Chapra, S. C., and Storey, M. L. (1996). Determination of reaeration coefficients: A whole lake approach, Journal of Environmental Engineering, 122(4), 269-275. 

  22. Golub, M. (2016). Controls on temporal variation in ecosystem-atmosphere carbon dioxide exchange in lakes and reservoirs, Department of Freshwater and Marine Sciences, Doctoral dissertation, Ph.D., WV, USA : University of Wisconsin-Madison. 

  23. Imberger, J. and Patterson, J. C. (1989). Physical limnology, Advances in applied mechanics, 27, 303-475. 

  24. Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., Larmola, T., Silvola, J., and Martikainen, P. J. (2006). Sediment respiration and lake trophic state are important predictors of large CO 2 evasion from small boreal lakes, Global Change Biology, 12, 1554-1567. 

  25. Lombardo, C. P. and Gregg, M. C. (1989). Similarity scaling of viscous and thermal dissipation in a convective surface boundary layer, Journal of Geophysical Research, 94(C5), 6273-6284. 

  26. MacIntyre. S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, Geophysical Research Letters, 37(24), L24604. 

  27. Martin, J. and Mccutcheon, S. (1999). Hydrodynamics and transport for water quality modeling, CRC Press. 

  28. McClure, R. P., Hamre, K. D., Niederlehner, B. R., Munger, Z. W., Chen, S., Lofton, M. E., Schreiber, M. E., and Carey, C. C. (2018). Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir, Science of The Total Environment, 636, 610-620. 

  29. McCullough, I. M., Dugan, H. A., Farrell, K. J., Morales-Williams, A. M., Ouyang, Z., Roberts, D., Scordo, F., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak-Tetley, F. E., Skaff, N. K., Summers, J. C., Weathers, K. C., and Hanson, P. C. (2018). Dynamic modeling of organic carbon fates in lake ecosystems, Ecological Modelling, 386, 71-82. 

  30. McDonald, C. P., Stets, E. G., Striegl, R. G., and Butman, D. (2013). Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States, Global Biogeochemical Cycles, 27, 285-295. 

  31. Park, H. S. and Chung, S. W. (2018). pCO 2 dynamics of stratified reservoir in yemperate zone and CO 2 pulse emissions during turnover events, Water, 10, 1347. 

  32. Prairie, Y., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., Giorgio, P., DelSontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serca, D., Sobek, S., and Vachon, D. (2018). Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?, Ecosystems, 21, 1058-1071. 

  33. Tan, Z., Zhuang, Q., Shurpali, N., Marushchak, M., Biasi, C., Eugster, W., and Katey, W. A. (2017). Modeling CO 2 emissions from Arctic lakes: Model development and site-level study, Journal of Advances in Modeling Earth Systems, 9. 

  34. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate, Limnology Oceanography, 54, 2298-2314. 

  35. Verhamme, E. M., Redder, T. M., Schlea, D. A., Grush, J., Bratton, J. F., and DePinto, J. V. (2016). Development of the Western Lake Erie Ecosystem Model (WLEEM): application to connect phosphorus loads to cyanobacteria biomass, Journal of Great Lakes Research, 42(6), 1193-1205. 

  36. Wang, W., Roulet, N. T., Kim, Y. I., Strachan, I. B., Giorgio, P., Prairie, Y. T., and Tremblay, A. (2018). Modelling CO 2 emissions from water surface of a boreal hydroelectric reservoir, Science of The Total Environment, 612, 392-404. 

  37. Wetzel, R. G. (1983). Periphyton of freshwater ecosystems, Developments in hydrobiology: Hydrobioogia. 

  38. Winslow, L. A., Read, J. S., Hanson, P. C., and Stanley, E. H. (2013). Lake shoreline in the contiguous United States: Quantity, distribution and sensitivity to observation resolution, Freshwater biology, 59(2), 213-223. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로