$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석
Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.36 no.4, 2020년, pp.284 - 299  

안인경 (충북대학교 환경공학과) ,  박형석 (충북대학교 환경공학과) ,  정세웅 (충북대학교 환경공학과) ,  류인구 (국립환경과학원 한강물환경연구소) ,  최정규 (한국수자원공사 물환경처) ,  김지원 (한국수자원공사 물환경처)

Abstract AI-Helper 아이콘AI-Helper

Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the tempora...

주제어

표/그림 (19)

질의응답

핵심어 질문 논문에서 추출한 답변
식물플랑크톤의 일차생산은 어떤 과정이자, 무엇의 원인이 되나요? 식물플랑크톤의 일차생산은 수체 내 유기물을 공급하는 가장 기초적인 과정이자, 부영양화된 호소에 유기탄소를 공급하는 주요 원인이 된다(Jonsson et al., 2001; Kim et al.
TOC는 무엇에 따라 어떻게 구분되나요? TOC는 수체 내에 존재하는 성상에 따라 용존성 유기탄소(Dissolved organic carbon, DOC)와 입자성 유기탄소(Particulate organic carbon, POC)로 구분된다. 일반적으로 하천과 호소에서는 대부분 DOC 형태로 존재하며 POC는 총 유기물의 10∼17% 정도이다(Keskitalo and Eloranta, 1999; Kim et al.
AEM3D는 무엇에 관련해서 어떤 장점이 있나요? AEM3D는 범용 3차원 수리-수질 모델로써 수리-수질-생태의 연동 해석(Coupled modeling)이 가능하다. 식물플랑크톤 모의와 관련해서는 조류 종을 7가지로 구분하여 시간적 천이특성을 해석할 수 있고, 남조류의 부력조절 기능을 모의 할 수 있는 장점이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (57)

  1. Bae, D. Y., Yang, E. C., Jung, S. H., and Lee, J. H. (2007). Nutrients and chlorophyll dynamics along the longitudinal gradients of Daechung Reservoir, Korean Journal of Limnology, 40(2), 285-293. [Korean Literature] 

  2. Catalan, N., Marce, R., Kothawala, D. N., and Tranvik, L. J. (2016). Organic carbon decomposition rates controlled by water retention time across inland waters, Nature geoscience, 9(7), 501-504. 

  3. Choi, K. S. (2000). Dynamics of dissolved organic carbon in a deep reservoir, lake Soyang, Ph.D dissertation, Kangwon National University, Korea. 

  4. Chung, S. W. and Oh, J. K. (2006). River water temperature variations at upstream of Daecheong lake during rainfall events and development of prediction models, Journal of Korea Water Resources Association, 39(1), 79-88. [Korean Literature] 

  5. Chung, S. W., Imberger, J., Hipsey, M. R., and Lee, H. S. (2014). The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir, Ecological Modelling, 289, 133-149. 

  6. Cole, T. M. and Tillman D. H. (1999). Water quality modeling of lake Monroe using CE-QUAL-W2, Miscellaneous Paper EL-99-1. 

  7. Cole, T. M. and Tillman, D. H. (2001). Water quality modeling of Allatoona and West Point reservoirs using CE-QUAL-W2, U.S. Army Corps of Engineers. 

  8. Cole, T. M. and Wells, S. A. (2017). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 4.1. user manual, Department of Civil and Engineering, Portland State University. 

  9. Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T., and Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochemical Cycles, 22(1), GB1018. 

  10. Drake, T. W., Raymond, P. A., and Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty, Limnology and Oceanography Letters, 3(3), 132-142. 

  11. Escoffier, N., Bensoussan, N., Vilmin, L., Flipo, N., Rocher, V., David, A., and Groleau, A. (2018). Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine river, Environmental Science and Pollution Research, 25(24), 23451-23467. 

  12. Fee, E. J. (1973). A numerical model for determining integral primary production and its application to Lake Michigan, Journal of the Fisheries Board of Canada, 30(10), 1447-1468. 

  13. Fischer, H. B., List, E. J., Koh, R., Imberger. J., and Brooks, N. H. (1979). Mixing in inland and coastal waters, Academic Press, New York. NY. 

  14. Fukushima, T., Park, J. C., Imai, A., and Matsushige, K. (1996). Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquatic Sciences, 58(2), 139-157. 

  15. Hama, T. and Handa, N. (1983). The seasonal variation of organic constituents in a eutrophic lake, Lake Suwa, Japan. Part II. Dissolved organic matter, Archiv fur Hydrobiologie, 98(4), 443-462. 

  16. Han, Q., Wang, B., Liu, C. Q., Wang, F., Peng, X., and Liu, X. L. (2018). Carbon biogeochemical cycle is enhanced by damming in a karst river, Science of the Total Environment, 616, 1181-1189. 

  17. Hipsey, M. R., Romero, J. R., Antenucci, J. P., and Hamilton, D. (2005). Computational aquatic ecosystem dynamics model: CAEDYM v2, v2.2 science manual, Centre for Water Research, University of Western Australia. 

  18. Han River Flood Control Office (HRFCO). (2020). Water Resources Management Information System (WAMIS), http://www.wamis.go.kr (accessed Jan. 2020). 

  19. Hodges, B. and Dallimore, C. (2019). Aquatic ecosystem model: AEM3D v1.0 user manual, HydroNumerics, Victoria, Australia. 

  20. Hwang, G. S., Kim, D. S., Heo, W. M., and Kim, B. C. (1994). The primary productivity and the organic carbon loading from the watershed and fishfarming in lake Daechung, Korean Journal of Limnology, 27(4), 299-306. [Korean Literature] 

  21. Jeong, D. H., Chung, H. M., Cho, Y. S., Kim, E. S., Kim, C. S., Park, J. W., and Lee, W. S. (2018). A study on operation and management for TOC removal of public sewage treatment works, Journal of Korean Society of Water and Wastewater, 32(6), 535-550. [Korean Literature] 

  22. Jonsson, A., Meili, M., Bergstrom, A. K., and Jansson, M. (2001). Whole lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden), Limnology and Oceanography, 46(7), 1691-1700. 

  23. Kennedy, R. H., Thornton, K. W., and Gunkel. R. C. (1982). The establishment of water quality gradients in reservoirs, Canadian Water Resources Journal, 7(1), 71-87. 

  24. Keskitalo, J. and Eloranta, P. (1999). Limnology of humic water, Backhuys Publishers, Leiden, Netherlands. 

  25. Kim, B. C. , Choi, K, S. , Kim, C. G. , Lee, U. H. , Kim, D. S. , and Park, J. C. (1998). The distribution of dissolved and particulate organic carbon in Lake Soyang, Korean Journal of Limnology, 31(1), 17-24. [Korean Literature] 

  26. Kim, B. C., Choi, K. S., Kim, C. G., Lee, U. H., and Kim, Y. H. (2000). Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea, Water Research, 34(14), 3495-3504. 

  27. Kim, B. C., Hwang, G. S., and Kim, D. S. (1999). Primary production and organic carbon budget in lake Soyang, Journal of Environmental Research, 32(3), 200-206. [Korean Literature] 

  28. Kim, B. C., Kim, D. S., Hwang, G. S., and Cho, K. S. (1991). Primary production of phytoplankton and macrophytes in an eutrophic lagoon, lake Kyungpo, Korea, Report of the Suwa Hydrobiological Station, Shinshu University, 7, 99-103. 

  29. Kim, D. S. and Kim, B. C. (1990). Primary productivity in lake Paldang, Korean Journal of Limnology, 23(3), 167-179. [Korean Literature] 

  30. Kim, G. H., Lee, J. H., and An, K. G. (2012). Spatio-temporal fluctuations with influences of inflowing tributary streams on water quality in Daecheong reservoir, Korean journal of limnology, 45(2), 158-173. [Korean Literature] 

  31. Kim, J. K., Kim, B. C., Jung, S. M., Jang, C. W., Shin, M. S., and Lee, Y. K. (2007). The distribution of DOM and POM and the composition of stable carbon isotopes in streams of agricultural and forest watershed located in the Han river system, Korea, Korean journal of limnology, 40(1), 93-102. [Korean Literature] 

  32. Kim, S. J., Chung, S. W., Park, H. S., Oh, J. K., and Park, D. Y. (2018). Estimation of ecosystem metabolism using high-frequency DO and water temperature sensor data in Daecheong lake, Journal of Korean Society on Water Environment, 34(6), 579-580. [Korean Literature] 

  33. Kim, S. W. (2019). Characteristics of refractory organic matter in small streams into the Daecheong reservoir, Master Dissertation, Chungbuk National University, Chungbuk. [Korean Literature] 

  34. Kunz, M. J., Anselmetti, F. S., Wuest, A., Wehrli, B., Vollenweider, A., Thuring, S., and Senn, D. B. (2011). Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe), Journal of geophysical research, 166(G3), 1-13. 

  35. K-water. (2006). Sedimentation survey report : Daechung Dam, K-water. [Korean Literature] 

  36. Leonard, B. P. (1991). The ultimate conservative difference scheme applied to unsteady one-dimensional advection, Computer Methods in Applied Mechanics and Engineering, 88(1), 17-74. 

  37. Mendonca, R., Kosten, S., Sobek, S., Cardoso, S. J., Figueiredo-Barros, M. P., Estrada, C. H. D., and Roland, F. (2016) Organic carbon burial efficiency in a subtropical hydroelectric reservoir, Biogeosciences, 13, 3331-3342. 

  38. Mendonca, R., Kosten, S., Sobek, S., Cole, J. J., Bastos, A. C., Albuquerque, A. L., Cardoso, S. J., and Roland, F. (2014) Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach, Ecosystems, 17(3), 430-441. 

  39. Mendonca, R., Muller, R. A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., and Sobek, S. (2017). Organic carbon burial in global lakes and reservoirs, Nature Communications, 8(1), 1-7. 

  40. Ministry of Environment (ME). (2020). Water Environment Information System (WEIS), http://water.nier.go.kr/publicMain/mainContent.do (accessed Jan. 2020). 

  41. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 50(3), 885-900. 

  42. Mulholland, P. J. and Elwood, J. W. (1982). The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle, Tellus, 34(5), 490-499. 

  43. Nemeth, A., Paolini, J., and Herrera. R. (1982). Carbon transport in the Orinoco river: preliminary results, Transport of carbon and minerals in major world rivers, 52, 357-364. 

  44. Pacheco, F. S., Soares, M. C. S., Assireu, A. T., Curtarelli, M. P., Roland, F., Abril, G., Stech, J. L., Alvala, P. C., and Ometto, J. P. (2015). The Effects of River Inflow and Retention Time on the Spatial heterogeneity of Chlorophyll and Water-air $CO_2$ Fluxes in a Tropical Hydropower Reservoir, Biogeosciences, 12(1), 147-162. 

  45. Parks, S. J. and Baker, L. A. (1997). Sources and transport of organic carbon in an Arizona river-reservoir system, Water Research, 31(7), 1751-1759. 

  46. Phyoe. W. W. and Wang, F. (2019). A review of carbon sink or source effect on artificial reservoirs, International Journal of Environmental Science and Technology, 16, 2161-2174. 

  47. Striegl, R. G. and Michmerhuizen, C. M. (1998). Hydrologic influence on methane and carbon dioxide dynamics at two north central Minnesota lakes, Limnology and Oceanography, 43(7), 1519-1529. 

  48. Thornton, K. W., Kimmel, B. L., and Payne, F. E. (1990). Reservoir limnology: ecological perspectives, Wiley-Interscience, 246. 

  49. Thurman, E. M. (1985). Organic geochemistry of natural waters, Developments in Biogeochemistry, (2), Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, Netherlands. 

  50. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P. Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Wachenfeldt, E. V., and Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate, Limnology and oceanography, 54(6, part 2), 2298-2314. 

  51. Vollenweider, R. A. (1965). Calculation models of photosynthesisdepth curves and some implications regarding day rate estimates in primary production measurements, Primary Productivity in Aquatic Environments, Goldman, C. R. (ed. ), University of california press, United States, 425-457. 

  52. Wetzel, R. G. (1983). Limnology, Saunders College Publishing, Orlando. 

  53. Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems, Academic press, San Diego, USA. 

  54. Yi, G. H., Kim, Y. K., Lee, Y. S., and Kim, D. J. (2006). Mass balance analysis and application of the WASP model on the internal organic matter production in lake Uiam, Journal of Korean Society on Water Environment, 1-11. [Korean Literature] 

  55. Yu, S. J., Ha, S. R., Hwang, J. Y., and Kim, C. S. (2003). Characteristics of aqueous organic matter and disinfection By-products(DBPs) formation potentials in Guem river, Journal of Korean Society on Water Environment, 19(6), 707-713. [Korean Literature] 

  56. Yu, S. J., Kim, C. S., Ha, S. R., Hwang, J. Y., and Chae, M. H. (2005). Analysis of natural organic matter (NOM) characteristics in the Geum river, Journal of Korean Society on Water Environment, 21(2), 125-131. [Korean Literature] 

  57. Zhang, L., Xue, M.. Wang, M., Cai, W. J., Wang, L., and Yu, Z. (2014). The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir, Journal of Geophysical Research: Biogeosciences, 119(5), 741-757. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로