$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정
Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway 원문보기

韓國ITS學會 論文誌 = The journal of the Korea Institute of Intelligent Transportation Systems, v.19 no.6, 2020년, pp.208 - 221  

임동현 (차세대융합기술연구원 첨단교통체계연구실) ,  고은정 (한국과학기술원 조천식녹색교통대학원) ,  서영훈 (차세대융합기술연구원 첨단교통체계연구실) ,  김형주 (차세대융합기술연구원 첨단교통체계연구실)

초록
AI-Helper 아이콘AI-Helper

본 연구는 첨단운전자보조시스템(Advanced Driver Assistance System, ADAS)이 빠르게 보급됨에 따라 표본 프로브 차량에 설치된 ADAS로부터 얻은 개별차량의 궤적 데이터와 전방차량과의 차두거리 데이터를 이용하여 연속류의 교통밀도를 추정 및 분석하는 것을 목적으로 한다. 과거 연속류 교통밀도는 주로 차량검지시스템(Vehicle Detection System, VDS)에서 수집되는 교통량, 속도, 점유율 등의 데이터를 가공하여 추정되거나, CCTV등의 영상정보를 활용하여 직접 차량 대수를 계수하여 추정되었다. 이러한 방식은 교통밀도 추정의 공간적 제약이 있고, 교통 혼잡시 추정의 신뢰도가 낮다는 한계를 보였다. 이에 본 연구에서는 선행연구의 한계를 극복하기 위해 ADAS로부터 수집된 개별차량 궤적 데이터와 차두거리 정보를 활용하여 도로의 공간을 검지하고 일반화된 밀도(Generalized Density)방식을 이용하여 시공간적 교통밀도를 추정한다. 이에 따라 ADAS차량의 표본율에 따른 교통밀도 추정의 정확도를 분석한 결과, 30%의 표본율일 경우 교통밀도 참 값과 약 90% 일치하는 것으로 나타났다. 이를 통해 본 연구는 향후 ADAS 및 자율주행차량이 혼재되는 도로 상황에서 신뢰도 높은 교통밀도 추정을 가능하게 하며 효율적인 교통운영관리에 기여할 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, tra...

주제어

참고문헌 (17)

  1. Edie L. C.(1963), Discussion of Traffic Stream Measurements and Definitions, Port of New York. 

  2. EPNC, Sensor Fusion, Latest Strategies and Technology Trends by Company, http://www.epnc.co.kr/news/articleView.html?idxno81050, 2020.07.17. 

  3. Kim H. J. and Jang K. T.(2016), "Characteristics of Travel Time Variability in Congested Traffic," Proceedings of the 23rd ITS World Congress, Melbourne, Australia. 

  4. Kim H. J., Kim Y. H. and Jang K. T.(2017), "Systematic relation of estimated travel speed and actual travel speed," IEEE Transactions on Intell. Transp. Syst., vol. 18, no. 10, pp.2780-2789. 

  5. Kim M. J., Jung D. H. and Kim H. G.(2019), "A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology," Journal of the Korea Institute of Intelligent Transport Systems, vol. 18, no. 6, pp.110-123. 

  6. Kim M. S., Eom K. J. and Lee C. W.(2009), "Density Measurement for Continuous Flow Segment Using Two Point Detectors," Journal of Korean Society of Intelligent Transportation Systems, vol. 8, no. 1, pp.37-44. 

  7. Kim S. J., Han E., Lee H. P., Kim H. and Yun I. S.(2016), "Comparison of Estimation Methods for the Density on Expressways Using Vehicular Trajectory Data from a Radar Detector," Int. J. Highw. Eng., vol. 18, no. 5, pp.117-125. 

  8. Korea Expressway Corporation, http://data.ex.co.kr/, 2020.07.17. 

  9. Korea Highway Capacity Manual(2013), Ministry of Land, Infrastructure and Transport. 

  10. Korea Ministry of Government Legislation(2017), Article 30 of the Enforcement Rules of the Traffic Safety Act. 

  11. May A. D.(1990), Traffic Flow Fundamentals, Prentice-Hall: Upper Saddle River, N. J., pp.192-226. 

  12. Park B. J., Kim T. H., Yang I. C., Heo J. Y. and Son B. S.(2015), "A Method for Measuring accurate traffic density by aerial photography," Journal of Advanced Transportation, vol. 49, pp.568-580. 

  13. Park B. J., Roh C. G. and Kim J. S.(2014), "A Case Study of Panoramic Section Image Collection Method for Measuring Density-with matched images in the Seoul Beltway Sapaesan Tunnel," Journal of the Korea Institute of Intelligent Transport Systems, vol. 13, no. 4, pp.20-29. 

  14. Prescient & Strategic Intelligence(2020), ADAS Sensor Market Research Report: By Type (Radar, LiDAR, Camera, Ultrasonic), Vehicle Autonomy (Semi-Autonomous Vehicle, Fully-Autonomous Vehicle), Vehicle Type (Passenger Car, Commercial Vehicle), Application (ACC System, AEB System, BSD System, LKAS, AFL System, CTA System, DMS, IPA System, NVS)-Industry Size, Trend, Growth and Demand Forecast to 2030. 

  15. Roess R. P., Prassas E. S. and McShane W. R.(2004), Traffic Engineering, 3rd Ed, Pearson Prentice Hall: Upper Saddle River, N. J. 

  16. Toru S., Takahiko K. and Yasuo A.(2015), "Estimation of Flow and Density using Vehicles with Spacing Measurement Equipment," Transportation Research Part C, vol. 53, pp.134-150. 

  17. Yang I. C., Jeon W. H., Lee H. M. and Nam D. S.(2018), "A Novel Method to Estimate Traffic Density using Automotive Radar Sensors and Deep Learning Algorithm," Journal of Korean Society of Civil Engineers 2018 Essay Conference-Specialized Session, pp.324-325. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로