$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

그래핀나노플레이트 나노복합소재 분산법 연구 동향
A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion 원문보기

Composites research = 복합재료, v.33 no.6, 2020년, pp.321 - 328  

박상유 (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ,  황지영 (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ,  박영수 (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ,  강승범 (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology)

초록
AI-Helper 아이콘AI-Helper

최근 다양한 분야에서 활용하기 위한 고분자 나노복합소재 개발이 활발히 진행되고 있다. 2차원 나노소재 중 물성이 우수하다고 알려진 신소재인 그래핀나노플레이트를 활용하여 고분자 기지와 복합소재를 제조할 때 강한 응집현상이 일어나기 때문에 우선적으로 분산 문제를 해결하고자 하는 요구가 높아지고 있다. 본 리뷰 논문에서는 그래핀나노플레이트의 다양한 분산법을 사용하여 분산성이 향상된 탄소 나노복합소재 제조에 대한 연구를 소개하고자 한다. 고분산성을 통해 물성이 향상된 탄소 나노복합소재는 앞으로 더욱 다양한 분야에서 널리 활용될 것이다.

Abstract AI-Helper 아이콘AI-Helper

Recently, development of nanocomposite materials for applying in various fields has been actively underway. Of the two-dimensional nanomaterials, graphene nanoplatelets (GnPs) are highly utilized because of their excellent properties, but a problem of strong aggregations is occurred when GnPs are fa...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • GnP의 분산은 고분자 나노 복합소재를 제조하고 소재의 특성을 증폭시켜서 활용도를 높이기 위하여 넘어야 할 난제임에 분명하다. 본 리뷰는 이러한 과제를 해결하기 위한 GnP의 분산 전략을 다루고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (67)

  1. Yadav, S.K., and Cho, J.W., "Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites," Applied Surface Science, Vol. 266, 2013, pp. 360-367. 

  2. Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang Y., and Lin, Y., "Highly durable Graphene Nanoplatelets Supported Pt Nanocatalysts for Oxygen Reduction," Journal of Power Sources, Vol. 195, No. 15, 2010, pp. 4600-4605. 

  3. King, J.A., Klimek, D.R., Miskioglu, I., and Odegard, G.M., "Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites," Journal of Applied Sciences, Vol. 128, No. 6, 2013, pp. 4217-4223. 

  4. Rashada, M., Pana, F., Tang, A., and Asifd, M., "Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method," Progress in Natural Science: Materials International, Vol. 24, No. 2, 2014, pp. 101-108. 

  5. Prolongo, S.G., Moriche, R., Jimenez-Suarez, A., Sanchez, M., and Urena, A., "Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins," European Polymer Journal, Vol. 61, 2014, pp. 206-214. 

  6. Yue, L., Pircheraghi, G., Monemian, S.I., and Manas-Zloczower, I., "Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets - Dispersion and Synergy Effects," Carbon, Vol. 78, 2014, pp. 268-278. 

  7. Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S.F.S., Baradaran, S., Montazer E., Zubir, M.N.M., Alehashem, M.S., Kazi, S.N., and Dahari, M., "Graphene Nanoplatelets-silver Hybrid Nanofluids for Enhanced Heat Transfer," Energy Conversion and Management, Vol. 100, 2015, pp. 419-428. 

  8. Wang, F., Drzal, L.T., Qin, Y., and Huang, Z., "Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/epoxy Composites by Incorporation of Graphene Nanoplatelets," Composites Part A: Applied Science and Manufacturing, Vol. 87, 2016, pp. 10-22. 

  9. Iranmanesh, S., Ong, H. C., Ang, B.C., Sadeghinezhad, E., Esmaeilzadeh, A., and Mehrali M., "Thermal Performance Enhancement of an Evacuated Tube Solar Collector Using Graphene Nanoplatelets Nanofluid," Journal of Cleaner Production, Vol. 162, 2016, pp. 121-129. 

  10. Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. 

  11. Sharmaa, A., Narsimhachary, D., Sharma, V.M., Sahoo, B., and Paul, J., "Surface Modification of Al6061-SiC Surface Composite through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study," Surface & Coatings Technology, Vol. 368, 2019, pp. 175-191. 

  12. Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra T.A., and Roslaniec Z., "Synergetic Effect of Single-walled Carbon Nanotubes (SWCNT) and Graphene Nanoplatelets (GNP) in Electrically Conductive PTT-block-PTMO Hybrid Nanocomposites Prepared by in situ Polymerization," Composites Science and Technology, Vol. 118, 2015, pp. 72-77. 

  13. Chatterjee, S., Nafezarefi, F., Tai, N.H., Schlagenhauf, L., Nuesch, F.A., and Chu, B.T.T., "Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites," Carbon, Vol. 50, 2012, pp. 5380-5386. 

  14. Lin, Y., Wood, M., Imasato, K., Kuo, J.J., Lam, D., Mortazavi, N., Slade, T.J., Hodge, S.A., Xi, K., Kanatzidis, M.G., Clarke, D.R., Hersama, M.C., and Snyder, G.J., "Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Multi-Layer Graphene Nanoplatelets," Energy and Environment Science, Vol. 13, No. 11, 2020, pp. 4114-4121. 

  15. Scaffaro, R., Botta, L., Maio, A., and Gallo, G., "PLA Graphene Nanoplatelets Nanocomposites: Physical Properties and Release Kinetics of an Antimicrobial Agent," Composites Part B: Engineering, Vol. 109, 2017, pp. 138-146. 

  16. Le, J.L., Du, H., and Pang, S.D., "Use of 2-D Graphene Nanoplatelets (GNP) in Cement Composites for Structural Health Evaluation," Composites Part B: Engineering, Vol. 67, 2014, pp. 555-563. 

  17. Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei Y., Liu, T., and Hu, X., "A Wearable Strain Sensor Based on the ZnO/graphene nanoplatelets Nanocomposite with large Linear Working Range," Journal of Materials Science, Vol. 54, No. 9, 2019, pp. 7048-7061. 

  18. Filippidou, M.K., Tegou, E., Tsouti, V., and Chatzandroulis, S., "A Flexible Strain Sensor Made of Graphene Nanoplatelets/polydimethylsiloxane Nanocomposite," Microelectronic Engineering, Vol. 142, 2015, pp. 7-11. 

  19. Kavan, L., Yum, J.H., Nazeeruddin, M.K., Gratzel, M., "Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells," ACS Nano, Vol. 5, No. 11, 2011, pp. 9171-9178. 

  20. Jeon, I.Y., Zhang, S., Zhang, L., Choi, H.-J., Seo, J.-M., Xia, Z., Dai, L., and Baek, J.-B., "Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect," Advanced Matrials, Vol. 25, No. 42, 2013, pp. 6138-6145. 

  21. Xiang, J., and Drzal, L.T., "Templated Growth of Polyaniline on Exfoliated Graphene Nanoplatelets (GNP) and Its Thermoelectric Properties," Polymer, Vol. 53, No. 19, 2012, pp. 4202-4210. 

  22. Kavan, L., Yum, J.-H., and Gratze, M., "Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells," Nano Letters, Vol. 11, No. 12, 2011, pp. 5501-5506. 

  23. Yang, B., Shi, Y., Miao, J.B., Xia, R., Su, L.F., Qian, J.S., Chen, P., Zhang, Q.L., and Liu, J.W., "Evaluation of Rheological and Thermal Properties of Polyvinylidene Fluoride (PVDF)/graphene Nanoplatelets (GNP) Composites," Polymer Testing, Vol. 67, 2018, pp. 122-135. 

  24. Watt, E., Abdelwahab, M.A., Snowdon, M.R., Mohanty, A.K., Khalil, H., and Misra, M., "Hybrid Biocomposites from Polypropylene, Sustainable Biocarbon and Graphene Nanoplatelets," Scientific Reports, Vol. 10, No. 1, 2020, pp. 1-13. 

  25. Alam, F., Choosri, M., Gupta, T.K., Varadarajan, K.M., Choia, D., and Kumar, S., "Electrical, Mechanical and Thermal Properties of Graphene Nanoplatelets Reinforced UHMWPE Nanocomposites," Materials Science & Engineering B, Vol. 241, 2019, pp. 82-91. 

  26. Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., and Taheri, F., "Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/epoxy Composites," Materials & Design, Vol. 66, 2015, pp. 419-428. 

  27. Mehrali, M., Sadeghinezhad, E., Latibari, S.T., Kazi, S.N., Mehrali, M., Zubir, M.N.B.M., and Metselaar, H.S.C., "Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets," Nanoscale Research Letter, Vol. 9, No. 1, 2014, pp. 15. 

  28. Qin, W., Vautard, F., Drzal, L.T., and Yu, J., "Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase," Composites Part B: Engineering, Vol. 69, 2015, pp. 335-341. 

  29. Yadav, S.D., Bhingole, P.P., Chaudhari, G.P., Nath, S.K., and Sommitsch, C., "Hybrid Processing of AZ91 Magnesium Alloy/nano-Al 2 O 3 Composites," Key Engineering Materials, Vol. 651-653, 2015, pp. 783-788. 

  30. Singh, L.K., Bhadauria, A., and Laha, T., "Comparing the Strengthening Efficiency of Multiwalled Carbon Nanotubes and Graphene Nanoplatelets in Aluminum Matrix," Powder Technology, Vol. 356, 2019, pp. 1059-1076. 

  31. Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., and Loos, A., "Interlaminar Reinforcement of Glass Fiber/epoxy Composites with Graphene Nanoplatelets," Composites: Part A, Vol. 70, 2015, pp. 82-92. 

  32. Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M., and Yoon, Y., "Stabilization and Dispersion of Carbon Nanomaterials in Aqueous Solutions: A Review," Separation and Purification Technology, Vol. 156, No. 2, 2015, pp. 861-874. 

  33. Huang, Y.Y., and Terentjev, E.M., "Dispersion and Rheology of Carbon Nanotubes in Polymers," International Journal of Material Forming, Vol. 1, No. 2, 2008, pp. 63-74. 

  34. Ndlwana, L., Motsa, M.M., and Mamba, B.B., "A Unique Method for Dopamine-cross-linked Graphene Nanoplatelets within Polyethersulfone Membranes (GNP-pDA/PES) for Enhanced Mechanochemical Resistance during NF and RO Desalination", European Polymer Journal, Vol. 136, 2020, pp. 109889. 

  35. Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K.S., and Sarfraz, M., "Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion," Ultrason Sonochem, Vol. 45, pp. 133-149. 

  36. Ma, P.-C., Siddiqui, N.A., Marom, G., and Kim, J.-K., "Dispersion and Functionalization of Carbon Nanotubes for Polymerbased Nanocomposites: A Review," Composites: Part A, Vol. 41, No. 10, 2010, pp. 1345-1367. 

  37. Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O'Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higggins, T., Barwich, S., May, P., Puczkarski, P., Ahned, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N., "Scalable Production of Large Quantities of Defect-free Few-layer Graphene by Shear Exfoliation In Liquids," Nature Materials, Vol. 13, No. 6, 2014, pp. 624-630. 

  38. Zhao, R., Han, Y., He, M., and Li, Y., "Grinding Kinetics of Quartz and Chlorite in Wet Ball Milling," Powder Technology, Vol. 305, 2017, pp. 418-425. 

  39. Rishi, A.M., Kandlikar, S.G., and Gupta, A., "Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer," Scientific Reports, Vol. 10, No. 1, 2020, pp. 11941. 

  40. Mao, M., Chen, S., He, P., Zhang, H., and Liu, H., "Facile and Economical Mass Production of Graphene Dispersions and Flakes," Journal of Materials Chemistry A, Vol. 2, No. 12, 2014, pp. 4132-4135. 

  41. Guo, W., and Chen, C, "Fabrication of Graphene/Epoxy Resin Composites with Much Enhanced Thermal Conductivity via Ball Milling Technique," Journal of Applied Polymer Sciences, Vol. 131, No. 15, 2014, pp. 40565. 

  42. Jung, Y., Stevens, E., Ding, B., Kim, S.-D., Woo, S.-K., and Lee, J.-K., "Microstructure and Electrical Conductivity in Shape and Size Controlled Molybdenum Particle Thick Film," Journal of Materials Science, Vol. 48, No. 10, 2013, pp. 3760-3768. 

  43. Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. 

  44. Cataldo, A., Biagetti, G., Mencarelli, D., Micciulla, F., Crippa, P., Turchetti, C., Pierantoni, L., and Bellucci, S., "Modeling and Electrochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentration," Nanomaterials, Vol. 10, No. 5, 2020, pp. 850. 

  45. Che, W.M., Teh, P.L., Jalilah, A.J., and Yeoh, C.K., "The Effect of the GNP-SDS Loadings on the Properties of the NRL/GNPSDS Composites," Materials Science and Engineering, Vol. 864, No. 1, 2020, pp. 012140. 

  46. Shazali, S.S., Amiri, A., Zubir, M.N.M., Rozali, S., Zabri, M.Z., Sabri, M.F.M., and Soleymaniha, M., "Investigation of the Thermophysical Properties and Stability Performance of Noncovalently Functionalized Graphene Nanoplatelets with Pluronic P-123 in Different Solvents," Materials Chemistry and Physics, Vol. 206, 2018, pp. 94-102. 

  47. Simon, T., Potara, M., Gabudean, A.-M., Licarete, E., Banciu, M., and Astilean, S., "Designing Theranostic Agents Based on Pluronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy," ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16191-16201. 

  48. Manta, A., Gresil, M., and Soutis, C., "Infrared Thermography for Void Mapping of a Graphene/epoxy Composite and Its Full­field Thermal Simulation," Fatigue & Fracture of Engineering Materials, Vol. 42, No. 7, 2019, pp. 1441-1453. 

  49. Ajorloo, M., Fasihi, M., Ohshima, M., and Taki, K., "How are the Thermal Properties of Polypropylene/graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller?," Materials and Design, Vol. 181, 2019, pp. 108068. 

  50. Maiti, S., Shrivastava, N.K., Suin, S., and Khatua, B.B., "Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate?MWCNT?Graphite Nanoplate Networking," ACS Applied Materials & Interfaces, Vol. 5, No. 11, 2013, pp. 4712-4724. 

  51. Rane, A.V., Kanny, K., Abitha, V.K., and Thomas S., "Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites," Synthesis of Inorganic Nanomaterials, Vol. 5, 2018, pp. 121-139. 

  52. Sangermanoa, M., Periolatto, M., Signorea, V., and Spena, P.R. "Improvement of the Water-vapor Barrier Properties of an Uvcured Epoxy Coating Containing Graphite Oxide Nanoplatelets," Progress in Organic Coatings, Vol. 103, 2017, pp. 152-155. 

  53. Zhang, Y., and Park, S.-J., "Imidazolium-optimized Conductive Interfaces in Multilayer Graphene Nanoplatelet/epoxy Composites for Thermal Management Applications and Electroactive Devices," Polymer, Vol. 168, 2019, pp. 53-60. 

  54. Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. 

  55. Moriche, R., Prolongo, S.G., Sanchez, M., Jimenez-Suarez, A., Chamizo, F.J., and Urena, A., "Thermal Conductivity and Lap Shear Strength of GNP/epoxy Nanocomposites Adhesives," International Journal of Adhesion & Adhesives, Vol. 68, 2016, pp. 407-410. 

  56. Ramanathan, T., Stankovich, S., Dikin, D. A., Liu, H., Shen, H., Nguyen, S.T., and Brinson, L.C., "Graphitic Nanofillers in PMMA Nanocomposites-An Investigation of Particle Size and Dispersion and Their Influence on Nanocomposite Properties," Journal of Polymer Science Part B : Polymer Physics, Vol. 45, No. 15, 2007, pp. 2097-2112. 

  57. Hu, H., and Chen, G., "Electrochemically Modified Graphite Nanosheets and Their Nanocomposite Films with Poly(vinyl alcohol)," Polymer Composite, Vol. 31, No. 10, 2010, pp. 1770- 1775. 

  58. Yang, J., Tian, M., Jia, Q.X., Shi, J.H., Zhang, L.Q., Lim, S.H., Yu, Z.Z., and Mai, Y.W., "Improved Mechanical and Functional Properties of Elastomer/graphite Nanocomposites Prepared by Latex Compounding," Acta Materialia, Vol. 55, No. 18, 2007, pp. 6372-6382. 

  59. Kim, H., and Macosko, C.W., "Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites", Macromolecules, Vol. 41, No. 9, 2008, pp. 3317-3327. 

  60. Kim, I.H., and Jeong, Y.G., "Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity," Journal of Polymer Science: Part B: Polymer Physics, Vol. 48, No. 8, 2010, pp. 850-858. 

  61. Wang, L., Hong, J., and Chen, G., "Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene," Polymer Engineering and Science, Vol. 50, No. 11, 2010, pp. 2176-2181. 

  62. Srivastava, N.K., and Mehra, R.M., "Study of Structural, Electrical, and Dielectric Properties of Polystyrene/foliated Graphite Nanocomposite Developed via in situ Polymerization," Journal of Applied Polymer Science, Vol. 109, No. 6, 2008, pp. 3991-3999. 

  63. Kalaitzidou, K., Fukushima, H., and Drzal, L.T., "A New Compounding Method for Exfoliated Graphite-polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Composites Science and Technology, Vol. 67, No. 10, 2007, pp. 2045-2051. 

  64. Wei, K.K., Leng, T.P., Keat, Y.C., Osman, H., and Rasidi, M.S.M., "The Potential of Natural Rubber (NR) in Controlling Morphology in Twomatrix Epoxy/NR/graphene Nano-platelets (GNP) Systems," Polymer Testing, Vol. 77, 2019, pp. 105905. 

  65. Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. 

  66. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A., Ahmad, I., and Jan, R., "EMI Shielding Properties of polymer blends with inclusion of graphene nano platelets," Results in Physics, Vol. 14, 2019, pp. 102365. 

  67. Abbaszadeh, M., Krizak, D., Kundu, S., "Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Membranes with Improved Chlorine Resistance," Desalination, Vol. 470, 2019, pp. 114116. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로