$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.18 no.4, 2020년, pp.497 - 508  

Jung, Euo Chang (Korea Atomic Energy Research Institute) ,  Kim, Tae-Hyeong (Korea Atomic Energy Research Institute) ,  Kim, Hee-Kyung (Korea Atomic Energy Research Institute) ,  Cho, Hye-Ryun (Korea Atomic Energy Research Institute) ,  Cha, Wansik (Korea Atomic Energy Research Institute)

Abstract AI-Helper 아이콘AI-Helper

In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • (Andor, SR-303i). The time-resolved luminescence spectra were recorded by accumulating 100 laser pulses using two different gated intensified charge-coupled devices (ICCD, Andor, DH-720/18U-03 iStar 720D for λex = 266, 355, and 410-500 nm, and DH320T-18U-93 for λex = 220-400 nm) attached to the outlet ports of the spectrographs. All spectra were measured using a 1,000 μs gate width (tw) and varying gate delay time (td).

대상 데이터

  • A high-purity grade silica gel with a particle size of 40-63 μm (Sigma-Aldrich 227196) was used. The pore size of the silica gel reported by the manufacturer was approximately 6 nm (0.
  • Excitation spectra were recorded by scanning the excitation wavelength from 200 to 500 nm with a 2 nm step. Emission spectra were measured using a CCD in the wavelength range of 242-823 nm, with a resolution of 1.16 nm. The integration times were 5 and 0.
  • sources. Two OPOs were operated at different wavelength ranges of 220-400 nm (Continuum, Horizon I) and 410-500 nm (OPOTEK, Vibrant B). All lasers were operated at a repetition rate of 10 Hz.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. K.W. Kim, M.J. Kim, M.K. Oh, J. Kim, H.H. Sung, R. I. Foster, and K.Y Lee, "Development of a treatment process and immobilization method for the volume reduction of uranium-bearing spent catalysts for final disposal", J. Nucl. Sci. Technol., 55(12), 1459-1472 (2018). 

  2. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006). 

  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). 

  4. T. Reich, H. Moll, M.A. Denecke, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N. Kaltsoyannis, N.M. Edelstein, and D.K. Shuh, "Characterization of Hydrous Uranyl Silicate by EXAFS", Radiochim. Acta., 74, 219-223 (1996). 

  5. T. Reich, H. Moll, T. Arnold, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, and D.K. Shuh, "An EXAFS Study of Uranium(VI) Sorption Onto Silica Gel and Ferrihydrite", J. Electron Spectrosc. Relat. Phenom., 96(1-3), 237-243 (1998). 

  6. E.R. Sylwester, E.A. Hudson, and P.G. Allen, "The Structure of Uranium (VI) Sorption Complexes on Silica, Alumina, and Montmorillonite", Geochim. Cosmochim. Acta., 64(14), 2431-2438 (2000). 

  7. M. Walter, T. Arnold, G. Geipel, A. Scheinost, and G. Bernhard, "An EXAFS and TRLFS Investigation on Uranium(VI) Sorption to Pristine and Leached Albite Surfaces", J. Colloid Interface Sci., 282(2), 293-305 (2005). 

  8. M.S. Massey, J.S. Lezama Pacheco, J.M. Nelson, S. Fendorf, and K. Maher, "Uranium Incorporation into Amorphous Silica", Environ. Sci. Technol., 48(15), 8636-8644 (2014). 

  9. A. Kowal Fouchard, R. Drot, E. Simoni, and J.J. Ehrhardt, "Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modelling", Environ. Sci. Technol., 38(5), 1399-1407 (2004). 

  10. R. Drot, J. Roques, and E. Simoni, "Molecular Approach of the Uranyl/Mineral Interfacial Phenomena", C. R. Chimie., 10(10-11), 1078-1091 (2007). 

  11. J. Wheeler and J.K. Thomas, "Photochemistry of the Uranyl Ion in Colloidal Silica Solution", J. Phys. Chem., 88(4), 750-754 (1984). 

  12. H. Moll, G. Geipel, V. Brendler, G. Berhard, and H. Nitsche, "Interaction of Uranium(VI) with Silicic Acid in Aqueous Solutions Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", J. Alloys Compd., 271-273, 765-768 (1998). 

  13. U. Gabriel, L. Charlet, C.W. Schlapfer, J.C. Vial, A. Brachmann, and G. Geipel, "Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Colloid Interface Sci., 239(2), 358-368 (2001). 

  14. C.J. Chisholm-Brause, J.M. Berg, K.M. Little, R.A. Matzner, and D.E. Morris, "Uranyl Sorption by Smectites: Spectroscopic Assessment of Thermodynamic Modelling", J. Colloid Interface Sci., 277, 366-382 (2004). 

  15. P. Trepte and V. Brendler, Supporting Information in A. Krepelova, V. Brendler, S. Sachs, N. Baumann, and G. Bernhard, "U(VI)-Kaolinite Surface Complexation in Absence and Presence of Humic Acid Studied by TRLFS", Environ. Sci. Technol., 41(17), 6142-6147 (2007). 

  16. G. Othmane, T. Allard, T. Vercouter, G. Morin, M. Fayek, and G. Calas, "Luminescence of Uranium-Bearing Opals: Origin and Use as a pH Record", Chem. Geol., 423, 1-6 (2016). 

  17. C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, and D.E. Morris, "Uranium(VI) Sorption Complexes on Montmorillonite as a Function of Solution Chemistry", J. Colloid Interface Sci., 233(1), 38-49 (2001). 

  18. N. Baumann, V. Brendler, T. Arnold, G. Geipel, and G. Bernhard, "Uranyl Sorption Onto Gibbsite Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", J. Colloid Interface Sci., 290(2), 318-324 (2005). 

  19. T. Arnold, S. Utsunomiya, G. Geipel, R.C. Ewing, N. Baumann, and V. Brendler, "Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy", Environ. Sci. Technol., 40(15), 4646-4652 (2006). 

  20. Z. Wang, J.M. Zachara, P.L. Gassman, C. Liu, O. Qafoku, W. Yantasee, and J.G. Catalano, "Fluorescence Spectroscopy of U(VI)-Silicates and U(VI)-Contaminated Hanford Sediment", Geochim. Cosmochim. Acta., 69(6), 1391-1403 (2005). 

  21. A.S. Saleh, J.Y. Lee, Y. Jo, and J.I. Yun, "Uranium(VI) Sorption Complexes on Silica in the Presence of Calcium and Carbonate", J. Environ. Radioact., 182, 63-69 (2018). 

  22. M.J. Comarmond, R. Steudtner, M. Stockmann, K. Heim, K. Muller, V. Brendrer, T.E. Payne, and H. Foerstendorf, "The Sorption Process of U(VI) onto SiO 2

  23. B. Drobot, R. Steudtner, J. Raff, G. Geipel, V. Brendler, and S. Tsushima, "Combination Luminescence Spectroscopy, Parallel Factor Analysis and Quantum Chemistry to Reveal Metal Speciation - A Case Study of Uranyl(VI) Hydrolysis", Chem. Sci., 6(2), 964-972 (2015). 

  24. C. Moulin, I. Laszak, V. Moulin, and C. Tondre, "Time-Resolved Laser-Induced Fluorescence as a Unique Tool for Low-Level Uranium Speciation", Appl. Spectrosc., 52(4), 528-535 (1998). 

  25. G. Wang, Y. Su, and D.L. Monts, "Parametric Investigation of Laser-Induced Fluorescence of Solid-State Uranyl Compounds", J. Phys. Chem. A., 112(42), 10502-10508 (2008). 

  26. E.S. Ilton, Z. Wang, J.F. Boily, O. Qafoku, K.M. Rosso, and S.C. Smith, "The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO 2 ", Environ. Sci. Technol., 46(12), 6604-6611 (2012). 

  27. G. Meinrath, "Uranium(VI) Speciation by Spectroscopy", J. Radioanal. Nucl. Chem., 224(1-2), 119-126 (1997). 

  28. J.T. Bell and R.E. Biggers, "The Absorption Spectrum of the Uranyl Ion in Perchlorate Media Part II. *The Effects of Hydrolysis on the Resolved Spectral Bands", J. Mol. Spectrosc., 22(1-4), 262-271 (1967). 

  29. J.T. Bell and R.E. Biggers, "Absorption Spectrum of the Uranyl Ion in Perchlorate Media Part III. Resolution of the Ultraviolet Band Structure; Some Conclusions Concerning the Excited State of UO 2 2+ ", J. Mol. Spectrosc., 25(3), 312-329 (1968). 

  30. R.G. Denning, "Electronic Structure and Bonding in Actinyl Ions and their Analogs", J. Phys. Chem. A., 111(20), 4125-4143 (2007). 

  31. M.P. Redmond, S.M. Cornet, S.D. Woodall, D. Whittaker, D. Collison, M. Helliwell, and L.S. Natrajan, "Probing the Local Coordination Environment and Nuclearity of Uranyl(VI) Complexes in Non-aqueous Media by Emission Spectroscopy", Dalton Trans., 40(15), 3914-3926 (2011). 

  32. P. Harvey, A. Nonat, C. Platas-Iglesias, L.S. Natrajan, and L.J. Charbonniere, "Sensing Uranyl(VI) Ions by Coordination and Energy Transfer to a Luminescent Europium(III) Complex", Angew. Chem. Int. Ed., 130(131), 10069-10072 (2018). 

  33. S. Maji, S. Kumar, and S. Kalyanasundaram, "Luminescence Studies of Uranyl-Aliphatic Dicarboxylic Acid Complexes in Acetonitrile Medium", Radichim Acta., 108(5), 361-373 (2020). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로