$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

토양-지하수내 미세플라스틱 거동 연구를 위한 수정진동자미세저울 기술 소개
Application of Quartz Crystal Microbalance to Understanding the Transport of Microplastics in Soil and Groundwater 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.33 no.4, 2020년, pp.463 - 475  

김주혁 (강원대학교 자연과학대학 지질학과) ,  명현아 (강원대학교 자연과학대학 지질학과) ,  손상보 (강원대학교 자연과학대학 지질학과) ,  권기덕 (강원대학교 자연과학대학 지질학과)

초록
AI-Helper 아이콘AI-Helper

최근 토양과 지하수에서도 미세플라스틱이 발견되어 미세플라스틱 환경오염 관련 연구의 중요성이 크게 대두되고 있다. 주로 ㎛ - nm의 작은 입자로 존재하는 점토광물과 금속산화광물은 표면적이 넓어 미세플라스틱에 대한 흡착력 등 화학 반응도가 매우 높기 때문에, 광물표면 상호작용은 토양과 지하수 환경 내 미세플라스틱의 거동을 결정하는 중요한 역할을 할 수 있다. 따라서, 광물과 미세플라스틱 간의 상호작용에 대한 환경광물학 연구는 미세플라스틱 거동 예측 기술개발 및 오염대책 마련에 핵심이 되는 연구분야라 할 수 있다. 광물표면과 미세플라스틱(특히, 나노플라스틱) 연구에는 분자-나노수준의 분석기술이 요구된다. 이번 기술보고에서는 나노그람(=10-9 g) 수준의 질량 변화를 실시간으로 측정할 수 있는 초정밀 분석기기로, 광물표면에 흡·탈착되는 미세플라스틱 및 나노플라스틱의 미세한 질량 변화를 측정할 수 있는, 수정진동자미세저울(quartz crystal microbalance, QCM)을 소개한다. QCM 작동원리를 소개하고, 대표적인 QCM 연구결과와 기존 컬럼 실험과의 장단점을 비교하여 미세플라스틱 연구에 QCM 활용 가능성을 논의한다.

Abstract AI-Helper 아이콘AI-Helper

Presence of microplastics in soil and groundwater has recently been reported and environmental concerns are raised as to the plastic pollution. In the subsurface environment, clay minerals and metal oxide minerals are commonly found as finely dispersed states. Because the minerals have high sorption...

주제어

표/그림 (6)

참고문헌 (72)

  1. Alagha, L., Wang, S., Yan, L., Xu, Z. and Masliyah, J., 2013, Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance. Langmuir, 29, 3989-3998. 

  2. Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji, N., 2018, Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704-1724. 

  3. Aragaw, T.A., 2020, Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159, 111517. 

  4. Ayela, C., Roquet, F., Valera, L., Granier, C., Nicu, L. and Pugniere, M., 2007, Antibody-antigenic peptide interactions monitored by SPR and QCM-D: A model for SPR detection of IA-2 autoantibodies in human serum. Biosensors and Bioelectronics, 22, 3113-3119. 

  5. Banzhaf, S., Nodler, K., Licha, T., Krein, A. and Scheytt, T., 2012, Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Science of the Total Environment, 438, 113-121. 

  6. Barnes, D.K., Galgani, F., Thompson, R.C. and Barlaz, M., 2009, Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1985-1998. 

  7. Baumgarten, B., Jaehrig, J., Reemtsma, T. and Jekel, M., 2011, Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Research, 45, 211-220. 

  8. Blettler, M.C., Abrial, E., Khan, F.R., Sivri, N. and Espinola, L.A., 2018, Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Research, 143, 416-424. 

  9. Bouwmeester, H., Hollman, P.C. and Peters, R.J., 2015, Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environmental Science & Technology, 49, 8932-8947. 

  10. Brennecke, D., Duarte, B., Paiva, F., Cacador, I. and Canning-Clode, J., 2016, Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189-195. 

  11. Butler, B.A., 2009, Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Research, 43, 1392-1402. 

  12. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L. and Suh, S., 2020, Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8, 3494-3511. 

  13. Chen, G. and Flury, M., 2005, Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256, 207-216. 

  14. Chen, Q., Xu, S., Liu, Q., Masliyah, J. and Xu, Z., 2016, QCM-D study of nanoparticle interactions. Advanced Colloid Interface Science, 233, 94-114. 

  15. Chinju, H., Kuno, Y., Nagasaki, S. and Tanaka, S., 2001, Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample. Journal of Nuclear Science and Technology, 38, 439-443. 

  16. Corcoran, P.L., Norris, T., Ceccanese, T., Walzak, M.J., Helm, P.A. and Marvin, C.H., 2015, Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environmental Pollution, 204, 17-25. 

  17. Deakin, M.R. and Buttry, D.A., 1989, Electrochemical applications of the quartz crystal microbalance. Analytical Chemistry, 61, 1147A-1154A. 

  18. Elimelech, M., Nagai, M., Ko, C.H. and Ryan, J.N., 2000, Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143-2148. 

  19. Fadare, O.O. and Okoffo, E.D., 2020, Covid-19 face masks: A potential source of microplastic fibers in the environment. The Science of the Total Environment, 737, 140279. 

  20. Fisher-Power, L.M. and Cheng, T., 2018, Nanoscale titanium dioxide (nTiO 2 ) transport in natural sediments: importance of soil organic matter and Fe/Al oxyhydroxides. Environmental Science & Technology, 52, 2668-2676. 

  21. Franchi, A. and O'Melia, C.R., 2003, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science & Technology, 37, 1122-1129. 

  22. Gregory, M.R., 1996, Plastic 'scrubbers' in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32, 867-871. 

  23. Gu, B., Wu, W.M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S. and Jardine, P.M., 2005, Bioreduction of uranium in a contaminated soil column. Environmental Science & Technology, 39, 4841-4847. 

  24. He, F., Zhang, M., Qian, T. and Zhao, D., 2009, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96-102. 

  25. He, L., Rong, H., Wu, D., Li, M., Wang, C. and Tong, M., 2020, Influence of biofilm on the transport and deposition behaviors of nano-and micro-plastic particles in quartz sand. Water Research, 178, 115808. 

  26. Hernandez, L.M., Yousefi, N. and Tufenkji, N., 2017, Are there nanoplastics in your personal care products?. Environmental Science & Technology Letters, 4, 280-285. 

  27. Hildebrandt, L., Voigt, N., Zimmermann, T., Reese, A. and Proefrock, D., 2019, Evaluation of continuous flow centrifugation as an alternative technique to sample microplastic from water bodies. Marine Environmental Research, 151, 104768. 

  28. Hurley, R.R. and Nizzetto, L., 2018, Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6-11. 

  29. Kanazawa, K.K. and Gordon II, J.G., 1985, The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. 

  30. Kim, H.J., Phenrat, T., Tilton, R.D. and Lowry, G.V., 2012, Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 370, 1-10. 

  31. Johansen, M.P., Prentice, E., Cresswell, T. and Howell, N., 2018, Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. Journal of Environmental Radioactivity, 190, 130-133. 

  32. Lapointe, M., Farner, J.M., Hernandez, L.M. and Tufenkji, N., 2020, Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54, 8719-8727. 

  33. Liu, X., Chen, G. and Su, C., 2012, Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches. Environmental Science & Technology, 46, 6681-6688. 

  34. Lwanga, E.H., Vega, J.M., Quej, V.K., de los Angeles Chi, J., del Cid, L.S., Chi, C., Segura, G.E., Gertsen, H., Salanki, T., van der Ploeg, M., Koelmans, A.A. and Geissen, V., 2017, Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7, 1-7. 

  35. Nattich-Rak, M., Adamczyk, Z., Sadowska, M., Morga, M. and Ocwieja, M., 2012, Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 412, 72-81. 

  36. Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M., 2009, Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543-557. 

  37. Ng, E., Lwanga, E.H., Eldridge, S.M., Johnston, P., Hu, H., Geissen, V. and Chen, D., 2018, An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377-1388. 

  38. Nizzetto, L., Futter, M. and Langaas, S., 2016, Are Agricultural Soils Dumps for Microplastics of Urban Origin?. Environmental Science & Technology, 50, 10777-10779. 

  39. Nomura, T. and Hattori, O., 1980, Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Analytica Chimica Acta, 115, 323-326. 

  40. Notley, S.M., Biggs, S., Craig, V.S. and Wagberg, L., 2004, Adsorbed layer structure of a weak polyelectrolyte studied by colloidal probe microscopy and QCM-D as a function of pH and ionic strength. Physical Chemistry Chemical Physics, 6, 2379-2386. 

  41. Magal, E., Weisbrod, N., Yechieli, Y., Walker, S.L. and Yakirevich, A., 2011, Colloid transport in porous media: impact of hyper-saline solutions. Water Research, 45, 3521-3532. 

  42. Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L. and Cedervall, T., 2017, Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7, 1-7. 

  43. Mattsson, K., Hansson, L.A. and Cedervall, T., 2015, Nanoplastics in the aquatic environment. Environmental Science: Processes & Impacts, 17, 1712-1721. 

  44. Millero, F.J., Hubinger, S., Fernandez, M. and Garnett, S., 1987, Oxidation of H 2 S in seawater as a function of temperature, pH, and ionic strength. Environmental Science & Technology, 21, 439-443. 

  45. Mitzel, M.R., Sand, S., Whalen, J.K. and Tufenkji, N., 2016, Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Research, 92, 113-120. 

  46. O'Connor, I.A., Golsteijn, L. and Hendriks, A.J., 2016, Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. Marine Pollution Bulletin, 113, 17-24. 

  47. Panno, S.V., Kelly, W.R., Scott, J., Zheng, W., McNeish, R.E., Holm, N., Hoellein, T.J. and Baranski, E.L., 2019, Microplastic contamination in karst groundwater systems. Ground Water, 57, 189-196. 

  48. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. and Tufenkji, N., 2010, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science & Technology, 44, 6532-6549. 

  49. Powell, B.A., Dai, Z., Zavarin, M., Zhao, P. and Kersting, A.B., 2011, Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environmental Science & Technology, 45, 2698-2703. 

  50. Quevedo, I.R., Olsson, A.L., Clark, R.J., Veinot, J.G. and Tufenkji, N., 2014, Interpreting deposition behavior of polydisperse surface-modified nanoparticles using QCM-D and sand-packed columns. Environmental Engineering Science, 31, 326-337. 

  51. Quevedo, I.R. and Tufenkji, N., 2012, Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environmental Science & Technology, 46, 4449-4457. 

  52. Sauerbrey, G., 1959, The use of quartz crystal oscillators for weighing thin layers and for microweighing. Zeitschrift fur Physik, 155, 206-222. 

  53. Seymour, M.B., Chen, G., Su, C. and Li, Y., 2013, Transport and retention of colloids in porous media: does shape really matter?. Environmental Science & Technology, 47, 8391-8398. 

  54. Singh, N., Tiwari, E., Khandelwal, N. and Darbha, G.K., 2019, Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environmental Science: Nano, 6, 2968-2976. 

  55. Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., Megharaj, M. and Fang, C., 2020, Microplastics generated when opening plastic packaging. Scientific Reports, 10, 1-7. 

  56. Song, Y.K., Hong, S.H., Eo, S., Han, G.M. and Shim, W.J., 2020, Rapid Production of Micro-and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environmental Science & Technology, 54, 11191-11200. 

  57. Song, Z., Yang, X., Chen, F., Zhao, F., Zhao, Y., Ruan, L., Wang, Y. and Yang, Y., 2019, Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization. Science of the Total Environment, 669, 120-128. 

  58. Sun, P., Shijirbaatar, A., Fang, J., Owens, G., Lin, D. and Zhang, K., 2015, Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment, 505, 189-198. 

  59. Tellechea, E., Johannsmann, D., Steinmetz, N.F., Richter, R.P. and Reviakine, I., 2009, Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir, 25, 5177-5184. 

  60. Trauscht, J., Pazmino, E. and Johnson, W.P., 2015, Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir : The ACS Journal of Surfaces and Colloids, 31, 9366-9378. 

  61. Treumann, S., Torkzaban, S., Bradford, S.A., Visalakshan, R.M. and Page, D., 2014, An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 164, 219-229 

  62. van der Westen, R., Sharma, P.K., De Raedt, H., Vermue, I., van der Mei, H.C. and Busscher, H.J., 2017, Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models. Physical Chemistry Chemical Physics, 19, 25391-25400. 

  63. Voinova, M.V., Rodahl, M., Jonson, M. and Kasemo, B., 1999, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta, 59, 391. 

  64. Wang, R. and Li, Y., 2013, Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics, 42, 148-155. 

  65. Waring, R.H., Harris, R. and Mitchell, S., 2018, Plastic contamination of the food chain: A threat to human health?. Maturitas, 115, 64-68. 

  66. Wright, S.L. and Kelly, F.J., 2017, Plastic and human health: a micro issue?. Environmental Science & Technology, 51, 6634-6647. 

  67. Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J. and Sun, Y., 2020, Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Science of The Total Environment, 707, 136065. 

  68. Xiao, L., Zheng, Z., Irgum, K. and Andersson, P.L., 2020, Studies of emission processes of polymer additives into water using quartz crystal Microbalance-A case study on organophosphate esters. Environmental Science & Technology, 54, 4876-4885. 

  69. Xu, D., Hodges, C., Ding, Y., Biggs, S., Brooker, A. and York, D., 2010, A QCM study on the adsorption of colloidal laponite at the solid/liquid interface. Langmuir, 26, 8366-8372. 

  70. Zhang, Q., Raoof, A. and Hassanizadeh, S.M., 2015, Pore­Scale Study of Flow Rate on Colloid Attachment and Remobilization in a Saturated Micromodel. Journal of Environmental Quality, 44, 1376-1383. 

  71. Zelenka, J., 1986, Piezoelectric Resonators and their Applications, Elsevier, Amstredam, 302p. 

  72. Zuddas, P. and Mucci, A., 1998, Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength. Geochimica et Cosmochimica Acta, 62, 757-766. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로