$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction 원문보기

Journal of information processing systems, v.16 no.6, 2020년, pp.1424 - 1436  

Yang, Ting-ting (Zhejiang Agriculture and Forestry University) ,  Zhou, Su-yin (Zhejiang Agriculture and Forestry University) ,  Xu, Ai-jun (Zhejiang Agriculture and Forestry University) ,  Yin, Jian-xin (Zhejiang Agriculture and Forestry University)

Abstract AI-Helper 아이콘AI-Helper

Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining a...

Keyword

표/그림 (7)

참고문헌 (36)

  1. Y. Boykov and M. P. Jolly, "Interactive organ segmentation using graph cuts," in Medical Image Computing and Computer-Assisted Intervention - MICCI 2000. Heidelberg, Germany: Springer, 2000, pp. 276-286. 

  2. Q. Zeng, Y. Miao, C. Liu, and S. Wang, "Algorithm based on marker-controlled watershed transform for overlapping plant fruit segmentation," Optical Engineering, vol. 48 no. 2, article no. 027201, 2009. 

  3. H. T. Zhang, H. P. Mao, and D. Y. Qiu, "Feature extraction for the stored-grain insect detection system based on image recognition technology," Transactions of the Chinese Society of Agricultural Engineering, vol. 25 no. 2, pp. 126-130, 2009. 

  4. C. S. Sharp, O. Shakernia, and S. S. Sastry, "A vision system for landing an unmanned aerial vehicle," in Proceedings of IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, South Korea, pp. 1720-1727, 2001. 

  5. D. K Isenor and S. G. Zaky, "Fingerprint identification using graph matching," Pattern Recognition, vol. 19 no. 2, pp. 113-122, 1986. 

  6. B. Wang, L. L. Chen, and J. Cheng, "New result on maximum entropy threshold image segmentation based on P system," Optik, vol. 163, pp. 81-85, 2018. 

  7. N. Otsu, "A threshold selection method from gray-level histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979. 

  8. Y. Xu, W. Yao, L. Hoegner, and U. Stilla, "Segmentation of building roofs from airborne LiDAR point clouds using robust voxel-based region growing," Remote Sensing Letters, vol. 8 no. 11, pp. 1062-1071, 2017. 

  9. D. Zhou and Y. Shao, "Region growing for image segmentation using an extended PCNN model," IET Image Processing, vol. 12 no. 5, pp. 729-737, 2018. 

  10. L. Ding and A. Goshtasby, "On the Canny edge detector," Pattern Recognition, vol. 34 no. 3, pp. 721-725, 2001. 

  11. Y. M. Luo and R. Duraiswami, "Canny edge detection on NVIDIA CUDA," in Proceedings of 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, 2008. 

  12. A. K. Cherri and M. A. Karim, "Optical symbolic substitution: edge detection using Prewitt, Sobel, and Roberts operators," Applied Optics, vol. 28 no. 21, pp. 4644-4648, 1989. 

  13. S. Vicente, V. Kolmogorov, and C. Rother, "Graph cut based image segmentation with connectivity priors," in Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008. 

  14. C. Rother, V. Kolmogorov, and A. Blake, "GrabCut: interactive foreground extraction using iterated graph cuts," ACM Transactions on Graphics, vol. 23, no. 3, pp. 309-314, 2004. 

  15. K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 1, pp. 386-397, 2020. 

  16. L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, 2017. 

  17. X. Li, H. Chen, X. Qi, Q. Dou, C. W. Fu, and P. A. Heng, "H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes," IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663-2674, 2018. 

  18. S. Loutridis, E. Douka, L. J. Hadjileontiadis, and A. Trochidis, "A two-dimensional wavelet transform for detection of cracks in plates," Engineering Structures, vol. 27, no. 9, pp. 1327-1338, 2005. 

  19. S. Balla-Arabe, X. Gao, D. Ginhac, V. Brost, and F. Yang, "Architecture-driven level set optimization: From clustering to subpixel image segmentation," IEEE Transactions on Cybernetics, vol. 46 no. 12, pp. 3181-3194, 2016. 

  20. Z. Zhuge, M. Xu, and Y. Liu, "Fabric image segmentation algorithm based on Mean Shift," Journal of Textile Research, vol. 28, no. 10, pp. 108-111, 2007. 

  21. L. Lin, D. Garcia-Lorenzo, C. Li, T. Jiang, and C. Barillot, "Adaptive pixon represented segmentation (APRS) for 3D MR brain images based on mean shift and Markov random fields," Pattern Recognition Letters, vol. 32 no. 7, pp. 1036-1043, 2011. 

  22. J. Sun, "A fast MEANSHIFT algorithm-based target tracking system," Sensors, vol. 12, no. 6, pp. 8218-8235, 2012. 

  23. Y. Liu, S. Z. Li, W. Wu, and R. Huang, "Dynamics of a mean-shift-like algorithm and its applications on clustering," Information Processing Letters, vol. 113 no. 1-2, pp. 8-16, 2013. 

  24. M. H. Jeong, B. J. You, Y. Oh, S. R. Oh, and S. H. Han, "Adaptive mean-shift tracking with novel color model," in Proceedings of IEEE International Conference Mechatronics and Automation, Niagara Falls, Canada, 2005, pp. 1329-1333. 

  25. H. Cho, S. J. Kang, S. I. Cho, and Y. H. Kim, "Image segmentation using linked mean-shift vectors and its implementation on GPU," IEEE Transactions on Consumer Electronics, vol. 60 no. 4, pp. 719-727, 2014. 

  26. K. Du, Y. Ju, Y. Jin, G. Li, Y. Li, and S. Qian, "Object tracking based on improved MeanShift and SIFT," in Proceedings of 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 2012, pp. 2716-2719. 

  27. G. B. Li and H. F. Wu, "Weighted fragments-based mean-shift tracking using color-texture histogram," Journal of Computer-Aided Design & Computer Graphics, vol. 23, no. 12, pp. 2059-2066, 2011. 

  28. C. Liu, A. Zhou, Q. Zhang, and G. Zhang, "Adaptive image segmentation by using mean-shift and evolutionary optimization," IET Image Processing, vol. 8, no. 6, pp. 327-333, 2014. 

  29. A. Mayer and H. Greenspan, "An adaptive mean-shift framework for MRI brain segmentation," IEEE Transactions on Medical Imaging, vol. 28, no. 8, pp. 1238-1250, 2009. 

  30. J. Zhou, J. Zhu, X. Mei, and H. Ma, "An adaptive MeanShift segmentation method of remote sensing images based on multi-dimension features," Geomatics & Information Science of Wuhan University, vol. 37 no. 4, pp. 419-418, 2012. 

  31. Y. Wang and Y. Sun, "Adaptive Mean Shift based image smoothing and segmentation," Acta Automatica Sinica, vol. 36 no. 12, pp. 1637-1644, 2012. 

  32. Y. F. Ge, H. P. Zhou, J. Q. Zheng, and H. C. Zhang, "A tree image segmentation algorithm based on relative color indices," Journal of Nanjing Forestry University (Natural Science Edition), vol. 2 no. 4, pp. 19-22, 2012. 

  33. M. Zhao, J. Qiang, X. Lin, and X. Feng, "Tree image Segmentation method based on the fractional dimension," Transactions of the Chinese Society for Agricultural Machinery, vol. 35, no. 2,pp. 72-75, 2004. 

  34. S. H. Jiang, "Research segmentation methods of stumpage image based on Android System," M.S. thesis, Northeast Forestry University, Harbin, China, 2015. 

  35. W. Ding, S. Zhao, S. Zhao, J. Gu, W. Qui, and B. Guo, "Measurement methods of fruit tree canopy volume based on machine vision," Transactions of the Chinese Society for Agricultural Machinery, vol. 47, no. 6, pp. 1-10, 2016. 

  36. T. Yang, F. Guan, and A. Xu, "Multiple trees contour extraction method based on Graph Cut algorithm," Journal of Nanjing Forestry University (Natural Sciences Edition), vol. 42, no. 6, pp. 91-98, 2018. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로