$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

우리나라 하천 관리에서 생물지형학의 적용과 전망
Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea 원문보기

Ecology and resilient infrastructure, v.7 no.1, 2020년, pp.1 - 14  

김대현 (서울대학교 지리학과) ,  김원 (한국건설기술연구원 국토보전연구본부) ,  김은석 (광주과학기술원 지구.환경공학부) ,  옥기영 (국립생태원 생태평가연구실) ,  장창래 (한국교통대학교 토목공학과) ,  최미경 (충남대학교 국제수자원연구소) ,  조강현 (인하대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

하천과 홍수터 생태계에서 생물지형학 연구는 폭 넓은 시공간 차원에서 생물계와 수문-지형체계 사이의 복잡한 다중관계를 다루어 왔다. 본 총설에서는 하천에서 (1) 생물과 수문지형 조건의 다자간 관계, (2) 생물다양성과 서식처 이질성의 관계, (3) 생태계 유형에 대한 교란의 영향에 대하여 설명함으로써 하천지형생물학의 범위와 과정을 논의하였다. 시간적으로 하천의 생물지형 복합체는 지형, 선구, 생물지형 및 생태적 단계의 순서로 전환이 된다. 공간적으로 물 흐름과 유사 분포가 식생과 상호작용하여 하도 지형의 변화가 일어난다. 이렇게 형성된 하천의 공간적 이질성은 하안의 생물종다양성을 증가시킨다. 그러나 댐 하류 하천에서는 서식처 유형과 조건이 심각하게 훼손되어 생물다양성이 저하된다. 우리나라의 하천에서는 최근 국지적 교란과 전 지구적 기후변화로 하안 식생이 번무하고 특히 외래종이 빠르게 정착하고 있다. 따라서 급격한 기후변화와 인류에 의한 압박의 시대에서 하천 생물과 수문지형 조건 사이의 상호 관계를 이해하는 것이 더욱 중요할 것으로 생각된다. 이 총설에서 논의한 하천 생물지형 개념틀은 우리나라 하천의 생태적 관리와 복원에 기여할 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorpho...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 특히 2019년에 발족한 응용생태공학회의 하천생물지형 분과위원회에서는 하천생물지형학에 대한 소개가 선행되어야 한다는 인식을 하게 되었다. 따라서 본 총설에서는 하천생물지형학에 대한 이해를 도모하기위하여 이 학문 분과의 정의와 연구 내용을 식생을 중심으로 살펴보고, 우리나라 하천에서 생물과 수문지형 사이의 상호작용의 대표적인 사례를 소개하고자 한다.

가설 설정

  • 요인 사이의 되먹임이 발생하고 소멸하는 과정에 대하여 구체적으로 이해하기 위한 꾸준한 노력이 필요하다. 둘째, 홍수와 같은 대규모 교란 직후 또는 이를 대비하기 위한 선제적 전략을 수립할 때에 어느 한두 요인의 유지와 관리에 국한된 접근은 큰 성공을 거두기 어려울 것이다. 예를 들어, 식생을 관리, 복원하려면 적절한 토양과 지형 조건이 무엇이냐에 대한 충분한 고민을 하여야 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
진화학자 다윈은 생물을 최초로 지형 매개자로서 제안하였는데 무엇을 통해 제안하였는가? 생물지형학 (biogeomorphology)은 지형계와 생태계 사이의 상호작용을 연구하는 학문이라고 정의할 수 있다. 진화학자 다윈은 그의 저서 “The Formation of Vege Mould, Through the Action of Worms, with Observations on Their Habits”에서 생물을 최초로 지형 매개자로서 제안하였다 (Darwin 1881). 이처럼 지렁이가 토양에 미치는 영향에서 출발한 생물지형학 연구는 점차 동물, 식물, 미생물의 다양한 생물로, 그리고 암석, 지형 등의 다양한 지형계로 확장되어 왔을 뿐만아니라, 지형계가 생물에 미치는 영향을 포함하는 상호작용 관계로 발전하여 왔다 (Shaler 1892, Cowles 1899, Sprugel 1980, Stallins 2006, Coombes 2016).
생물지형학의 정의는 무엇인가? 생물지형학 (biogeomorphology)은 지형계와 생태계 사이의 상호작용을 연구하는 학문이라고 정의할 수 있다. 진화학자 다윈은 그의 저서 “The Formation of Vege Mould, Through the Action of Worms, with Observations on Their Habits”에서 생물을 최초로 지형 매개자로서 제안하였다 (Darwin 1881).
하천생물지형학에서는 다양한 생물 중에서 특히 식물과 지형이 끊임없는 상호 작용을 통해 하나의 생물지형 복합체를 구성한다고 알려져 있는데 그 예시에는 어떤 것이 있는가? 2). 예를 들면, 식생은 유수의 속도와 방향 등을 제어함으로써, 하천지형형성 작용에 간접적으로 개입할 수 있다. 또한 식생은 뿌리 조직으로 기질(substrate)의 응집성 (cohesiveness)을 결정하고, 지표상부 조직을 통해 물질의 침식, 운반 작용을 조절함으로써, 지표면 형태 변화의 규모와 속도에 직접적으로 영향을 준다. 이런 점에서 식생은 하천생물지형학에서대표적인 생태계 기술자 (ecosystem engineer; Jones etal.
질의응답 정보가 도움이 되었나요?

참고문헌 (100)

  1. Balke, T., Herman, P.M.J. and Bouma, T.J. 2014. Critical transitions in disturbance-driven ecosystems: identifying windows of opportunity for recovery. Journal of Ecology 102(3): 700-708. 

  2. Baptist, M.J. 2005. Modelling Floodplain Biogeomorphology. Ph.D. Dissertation, Delft University, the Netherlands. 

  3. Batz, N., Verrecchia, E.P. and Lane, S.N. 2015. Organic matter processing and soil evolution in a braided river system. Catena 126: 86-97. 

  4. Bendix, J. and Hupp, C.R. 2000. Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes 14: 2977-2990. 

  5. Blondeaux, P. and Seminara, G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470. 

  6. Brierley, G.J. and Fryirs, K.A. 2005. Geomorphology and River Management: Application of the River Styles Framework, Blackwell, Malden, MA, USA. 

  7. Brookes, C.J., Hooke, J.M. and Mant, J. 2000. Modelling vegetation interaction with channel flow in river valleys of the Mediterranean region. Catena 40(1): 93-118. 

  8. Brooks, A.P., Brierley, G.J. and Millar, R.G. 2003. The long-term control of vegetation and woody debris on channel and floodplain evolution: insights from a paired catchment study in south eastern Australia. Geomorphology 51(1-3): 7-29. 

  9. Byun, C., de Blois, S. and Brisson, J. 2018. Management of invasive plants through ecological resistance. Biological Invasions 20: 13-27. 

  10. Catford, J.A., Jansson, R. and Nilsson, C. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22-40. 

  11. Chang, H. and Kim, C. 2004. Recent research trends in American geomorphology and hydrogeography. Journal of the Korean Geographical Society 39: 873-887. (in Korean) 

  12. Charlton, R. 2008. Fundamentals of Fluvial Geomorphology. Routledge, London, UK. 

  13. Cho, H.J., Wo, H.S., Lee, J.W. and Cho, K.H. 2008. Changes in riparian vegetation after restoration in an urban stream, Yangjae stream. Journal of Korean Wetlands Society 10: 111-124. (in Korean) 

  14. Cho, K.H. and Lee, S.H. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under climate change in the Korean peninsula. Ecology and Resilient Infrastructure 2: 206-215. (in Korean) 

  15. Choi, J.K. Choi, M.K. and Choi, C.B. 2015. Follow-up monitoring & adaptive management after ecological restoration for the stream. Journal of Korean Environmental Restoration Technology 18(6): 85-95. (in Korean) 

  16. Choi, M.K., Takemon, Y. and Sumi, T. 2012. Historical changes of aquatic habitats and present species richness of macroinvertebrates in the Kizu River. In, Proceeding of 2012 XIIIth International Conference on Ephemeroptera, XVIIth International Symposium on Plecoptera in Japan, 2012. 

  17. Coombes, M.A. 2016. Biogeomorphology: diverse, integrative and useful. Earth Surface Processes and Landforms 41(15): 2296-2300. 

  18. Corenblit, D., Baas, A., Balke, T., Bouma, T., Fromard, F., Garofano-Gomez, V., Gonzalez, E., Julien, F., Kim, D., Bambs, L., Stallins, A., Steiger, J., Tabacchi, E. and Walcker, R. 2015. Engineer pioneer plants respond to and affect geomorphic constraints similarly along waterterrestrial interfaces world-wide. Global Ecology and Biogeography 24: 1363-1376. 

  19. Corenblit, D., Gurnell, A.M., Steiger, J. and Tabacchi, E. 2008. Reciprocal adjustments between landforms and living organisms: Extended geomorphic evolutionary insights. Catena 73(3): 261-273. 

  20. Corenblit, D., Steiger, J. and Tabacchi, E. 2010. Biogeomorphologic succession dynamics in a Mediterranean river system. Ecography 33: 1136-1148. 

  21. Corenblit, D., Steiger, J., Gurnell, A.M., Tabacchi, E. and Roques, L. 2009. Control of sediment dynamics by vegetation as a key function driving biogeomorphologic succession within fluvial corridors. Earth Surface Processes and Landforms 34: 1790-1810. 

  22. Corenblit, D., Tabacchi, E., Steiger, J. and Gurnell, A.M. 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth-Science Reviews 84(1-2): 56-86. 

  23. Cowles, H.C. 1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Botanical Gazette 27(2): 95-391. 

  24. Crooks, J.A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97: 153-166. 

  25. Crosato, A., Desta, F.B., Cornelisse, J., Schuurman, F. and Uijttewaal, W.S.J. 2012. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels. Water Resources Research 48: W06524. 

  26. Darwin, C. 1881. The Formation of Vege Mould, Through the Action of Worms, with Observations on Their Habits. Murray, London, UK. 

  27. Davies, N.S. and Gibling, M.R. 2013. The sedimentary record of Carboniferous rivers: continuing influence of land plant evolution on alluvial processes and palaeozoic ecosystems. Earth-Science Reviews 120: 40-79. 

  28. Defina, A. and Bixio, A.C. 2005. Mean flow and turbulence in vegetated open channel flow. Water Resources Research 41: W07006. 

  29. Dietrich, W.E. and Perron, J.T. 2006. The search for a topographic signature of life. Nature 439: 411-418. 

  30. Eichel, J., Krautblatter, M., Schmidtlein, S. and Dikau, R. 2013. Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201(1): 98-110. 

  31. Fei, S., Phillips, J. and Shouse, M. 2014. Biogeomorphic impacts of invasive species. Annual Review of Ecology, Evolution, and Systematics 45: 69-87. 

  32. Geerling, G.W., Ragas, A.M.J., Leuven, R.S.E.W., van den Berg, J.H., Breedveld, M., Liefhebber, D. and Smits, A.J.M. 2006. Succession and rejuvenation in floodplains along the river Allier (France). Hydrobiologia 565: 71-86. 

  33. Graf, W.L. 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79: 336-360. 

  34. Gran, K. and Paola, C. 2001. Riparian vegetation controls on braided stream dynamics. Water Resources Research 37(12): 3275-3283. 

  35. Gurnell, A. 2012. Fluvial geomorphology: wood and river landscapes. Nature Geoscience 5(2): 93-94. 

  36. Gurnell, A. 2014. Plants as river system engineers. Earth Surface Processes and Landforms 39: 4-25. 

  37. Holomuzki, J.P. and Messier, S.H. 1993. Habitat selection by the stream mayfly Paraleptophlebia guttata. Journal of the North American Benthological Society 12: 126-135. 

  38. Hwang, S.M., Kil, J.H., Kim, Y.H. and Kim, S.Y. 2014. Spreading and distribution of exotic weed Ammannia coccinea in Korea. Weed and Turfgrass Science 3: 292-298. (in Korean) 

  39. Information of Korean Alien Species. 2019. http://kias.nie.re.kr/home/main/main.do. Accessed 30 October 2019. (in Korean) 

  40. Jang, C.L. 2013. Experimental analysis of the morphological changes of the vegetated channels. Journal of Korea Water Resources Association 46(9): 909-919. (in Korean) 

  41. Jang, C.L. 2016. Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels. Journal of Korea Water Resources Association 49(1): 73-81. (in Korean) 

  42. Jang, C.L. and Kim, G. 2019. Experimental analysis of the characteristics of alternate bars in alluvial channels with floodplain vegetation. In, E-proceedings of the 38th IAHR World Congress. Panama City, Panama. 

  43. Jang, C.L. and Shimizu, Y. 2007. Vegetation effects on the morphological behavior of alluvial channels. Journal of Hydraulic Research 45(6): 763-772. 

  44. Jin, H.J., Choi, G.S., Shin, Y.S., Kim, J.H., Kim, J.E., Ye, Y.M. and Park, H.S. 2013. The allergenic potency of Japanese hop pollen is increasing with environmental changes in Korea. Allergy, Asthma and Immunology Research 5: 309-314. 

  45. Jin, S.N., Cho, H., Chu, Y. and Cho, K.H. 2019. GIS-based assessment of the lateral connectivity in the Cheongmicheon Stream, South Korea. Ecology and Resilient Infrastructure 6: 154-162. (in Korean) 

  46. Johnson, D.L. 1990. Biomantle evolution and the redistribution of Earth materials and artifacts. Soil Science 149: 84-102. 

  47. Jones, C.G., Lawton, J.H. and Shachak, M. 1994. Organisms as ecosystem engineers. In, Samson, F.B. and Knopf, F.L (eds.), Ecosystem Management. Springer, New York, USA. pp. 130-147. 

  48. Kamada, M., Woo, H. and Takemon, Y. 2004. Ecological engineering for restoring river ecosystems in Japan and Korea. In, Hong, S.K., Lee, J.A., Ihm, B.-S., Farina, A., Son, Y., Kim, E.-S., and Choe, J.C., Ecological Issues in a Changing World. Springer, Dordrecht, the Netherlands. pp. 337-353. 

  49. Kang, E.Y., Kim, T.G. and Oh, K.H. 2009. Seasonal changes of the vegetation structure and the primary production in the disturbed banks of the Upo Wetland. Journal of Wetlands Research 11: 61-70. (in Korean) 

  50. KICT. 2015. Development of Floodplain Management Technologies for the Increase of River-friendly Value. Korea Institute of Civil Engineering and Building Technology, Goyang, Korea. p.188. 

  51. Kim, D. 2012. Biogeomorphic feedbacks drive dynamics of vegetation-landform complex in a coastal riparian system. Ecosphere 3(8): 1-16. art74. 

  52. Kim, D. and Kupfer, J.A. 2016. Tri-variate relationships among vegetation, soil, and topography along gradients of fluvial biogeomorphic succession. PLOS ONE 11(9): e0163223. 

  53. Kim, D., DeWitt, T.J., Costa, C.S.B., Kupfer, J.A., McEwan, R.W. and Stallins, J.A. 2015. Beyond bivariate correlations: Three-block partial least squares illustrated with vegetation, soil, and topography. Ecosphere 6: 1-32. 

  54. Kim, W. and Kim, S. 2019. Analysis of the riparian vegetation expansion in middle size rivers in Korea. Journal of Korea Water Resources Associations 52(S-2): 875-885. 

  55. Kondolf, G.M. 1997. PROFILE: hungry water: effects of dams and gravel mining on river channels. Environmental Management 21: 533-551. 

  56. Lane, S.N. and Richards, K.S. 1997. Linking river channel form and process: time, space and causality revisited. Earth Surface Processes and Landforms 22: 249-260. 

  57. Lee, C.S. and Yu, Y.H. 2001. Development and outlook of restoration ecology as an ecology for the future. Korean Journal of Ecology 24: 191-202. (in Korean) 

  58. Lee, C.W., Kim, D., Cho, H. and Lee, H. 2015. The riparian vegetation disturbed by two invasive alien plants, Sicyos angulatus and Paspalum distichum var. indutum in South Korea. Ecology and Resilient Infrastructure 2: 255-263. (in Korean) 

  59. Lee, S., Cho, K.H. and Lee, W. 2016. Prediction of potential distributions of two invasive alien plants, Paspalum distichum and Ambrosia artemisiifolia, using species distribution model in Korean Peninsula. Ecology and Resilient Infrastructure 3: 189-200. (in Korean) 

  60. Lee, Y.H., Kang, B.H., Na, C.S., Yang, G.Y., Min, T.G. and Hong, S.H. 2011. Herbal flora and succession of stream under management conditions after its restorationcase study of Yangjaecheon in Seoul. Korean Journal of Weed Science 31: 49-70. (in Korean) 

  61. Leopold, L.B. and Wolman, M.G. 1957. River Channel Patterns: Braided, Meandering, and Straight. US Government Printing Office, Washington, D.C. 

  62. Magilligan, F.J. and Nislow, K.H. 2005. Changes in hydrologic regime by dams. Geomorphology 71: 61-78. 

  63. MOLIT. 2019. MOLIT Statistics System. Ministry of Land, Infrastructure and Transport, Sejong, South Korea. http://stat.molit.go.kr/portal/cate/engStatListPopup.do. Assessed 24 October 2019. 

  64. Naylor, L.A. 2005. The contributions of biogeomorphology to the emerging field of geobiology. Palaeogeography, Palaeoclimatology, Palaeoecology 219(1-2): 35-51. 

  65. Nepf, H.M. and Vivoni, E.R. 2000. Flow structures in depth-limited, vegetated flow. Journal of Geophysical Research 105(C12) (28): 547-557. 

  66. Ock, G. and Takemon, Y. 2014. Effect of reservoir-derived plankton released from dams on particulate organic matter composition in a tailwater river (Uji River, Japan): source partitioning using s isotopes of carbon and nitrogen. Ecohydrology 7: 1172-1186. 

  67. Ock, G., Jang, C.L., Kim, B. and Choi, M. 2019. A review on sediment replenishment to river channel for natural recovery of regulated rivers below large dams. Journal of Korea Water Resources Associations 52(S-2): 835-844. (in Korean) 

  68. Oh, Y.J., Lee, I.Y., Park, J.E., Oh, S.M. and Kim, C.S. 2008. Plant community change in the habitat of Humulus japonicus. Korean Journal of Weed Science 28: 15-19. (in Korean) 

  69. Osterkamp, W.R. and Hupp, C.R. 2010. Fluvial processes and vegetation-Glimpses of the past, the present, and perhaps the future. Geomorphology 116(3-4): 274-285. 

  70. Pattison, Z., Vallejo-Marin, M. and Willby, N. 2019. Riverbanks as battlegrounds: why does the abundance of native and invasive plants vary? Ecosystems 22: 578-586. 

  71. Petts, G.E. and Gurnell, A.M. 2005. Dams and geomorphology: research progress and future directions. Geomorphology 71: 27-47. 

  72. Phillips, J.D. 2009. Biological energy in landscape evolution. American Journal of Science 309: 271-289. 

  73. Phillips, J.D. 2016. Landforms as extended composite phenotypes. Earth Surface Processes and Landforms 41: 16-26. 

  74. Poole, G.C. 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshwater Biology 47: 641-660. 

  75. Power, M.E. Dietrich, W.E. and Finlay, J.C. 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20: 887-895 

  76. Richardson, D.M., Holmes, P.M., Esler, K.J., Galatowitsch, S.M., Stromberg, J.C., Kirkman, Pysek, P. and Hobbs, R.J. 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions 13: 126-139. 

  77. Richter, B.D., Baumgartner, J.V., Braun, D.P. and Powell, J. 1998. A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management 14: 329-340. 

  78. Rosenberg, D.M., McCully, P. and Pringle, C.M. 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50: 746-751. 

  79. Schuster, M.J., Wragg, P.D. and Reich, P.B. 2018. Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology 55: 2362-2373. 

  80. Shaler, N.S. 1892. The origin and nature of soils. In, Twelfth Annual Report of the Director, 1890-91, U.S. Geological Survey, Department of Interior, Washington, D.C. pp. 213-345. 

  81. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688. 

  82. Sprugel, D.G. 1980. A "pedagogical genealogy" of American plant ecologists. Bulletin of the Ecological Society of America 61(4): 197-200. 

  83. Stallins, J.A. 2006. Geomorphology and ecology: unifying themes for complex systems in biogeomorphology. Geomorphology 77(3-4): 207-216. 

  84. Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L. and Nadal, E. 2005. Seed inputs in riparian zones: implications for plant invasion. River Research and Applications 21: 299-313. 

  85. Tal, M. and Paola, C. 2010. Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments. Earth Surface Processes and Landforms 35(9): 1014-1028. 

  86. Thorne, C.R. 1990. Effects of vegetation on riverbank erosion and stability in vegetation and erosion. In, Thornes, J.B. (ed.), Vegetation and Erosion: Processes and Environments. John Wiley, New York. pp. 125-144. 

  87. Truong, S.H. and Uijttewaal, W.S.J. 2019. Transverse momentum exchange induced by large coherent structures in a vegetated compound channel. Water Resources Research 55(1): 589-612. 

  88. Tsujimoto, T. 1999. Fluvial processes in streams with vegetation. Journal of Hydraulic Research 16(6): 789-803. 

  89. Vargas-Luna, A., Duro, G., Crosato, A., and Uijttewaal, W. 2019. Morphological adaptation of river channels to vegetation establishment: A laboratory study. Journal of Geophysical Research: Earth Surface 124: 1981-1995. 

  90. Viles, H. 2019. Biogeomorphology: Past, present and future. Geomorphology. 

  91. Viles, H.A. 2008. Understanding dryland landscape dynamics: Do biological crusts hold the key? Geography Compass 2(3): 899-919. 

  92. Viles, H.A., Naylor, L.A., Carter, N.E.A., and Chaput, D. 2008. Biogeomorphological disturbance regimes: progress in linking ecological and geomorphological systems. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 33(9): 1419-1435. 

  93. Williams, G.P. and Wolman, M.G. 1984. Downstream Effects of Dams on Alluvial Rivers. USGS Professional Paper, 1286, US Government Printing Office, Washington D.C. 

  94. Wohl, E. 2013. Floodplains and wood. Earth-Science Reviews 123: 194-212. 

  95. Woo, H. 2008. White river, green river? Magazine of Korea Water Resources Association 41(12): 38-47. 

  96. Woo, H. 2010. Trends in ecological river engineering in Korea. Journal of Hydro-environment Research 4: 269-278. 

  97. Woo, H. and Park, M.H. 2016. Cause-based categorization of the riparian vegetative recruitment and corresponding research direction. Ecology and Resilient Infrastructure 3(3): 207-211. 

  98. Yuma, M. and Hori, M. 1990. Seasonal and age-related changes in the behavior of the Genji firefly, Luciola cruciate (Coleoptera, Lampyridae). Japanese Journal of Entomology 58: 863-870. (In Japanese) 

  99. Zavaleta, E. 2000. Valuing ecosystem services lost to Tamarix invasion in the United States. In, Mooney, H.A. and Hobbs, R.J. (eds.), Invasive Species in a Changing World. Island Press, Washington, D.C., USA. pp. 261-300. 

  100. Zedler, J.B. and Kercher, S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23: 431-452. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로