$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 평균장 균질화를 이용한 입자 강화 복합재의 유효 물성치 예측 연구 동향
A Review of Mean-Field Homogenization for Effective Physical Properties of Particle-Reinforced Composites 원문보기

Composites research = 복합재료, v.33 no.2, 2020년, pp.81 - 89  

이상륜 (Department of Mechanical Engineering, KAIST) ,  유승화 (Department of Mechanical Engineering, KAIST)

초록
AI-Helper 아이콘AI-Helper

본 리뷰 논문에서는 최근에 연구된 평균장 균질화법을 이용한 다양한 물성치 예측 연구의 동향에 대해 소개한다. 유효 강성 예측에 사용되는 기존의 균질화법을 소개하고 이를 확장하여 유효 열/전기 전도성 및 유전 상수를 예측하는 방법을 소개한다. 압전열전과 같이 2개의 물리현상이 중첩된 다중 물리 현상의 구성방정식훅 법칙과 같이 단순한 선형 형태로 변환하여 복합재의 유효 물성치를 예측하는 연구를 소개하고 마지막으로 복합 재료의 유효 물성치를 예측하기 위한 일반화된 식을 제시하고 유한 요소 해석과 비교한 검증/연구를 소개한다.

Abstract AI-Helper 아이콘AI-Helper

In this review paper, we introduce recent research studied effective physical properties of the reinforced composite using mean-field homogenization. We address homogenization for effective stiffness and expand it to effective thermal/electrical conductivity and dielectric constant. Multiphysics pro...

Keyword

표/그림 (9)

참고문헌 (38)

  1. Obradovic, J., Boria, S., and Belingardi, G., "Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structures," Composite Structures, Vol. 94, No. 2, 2012, pp. 423-430. 

  2. Immarigeon, J-P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, W., and Beddoes, J.C., "Lightweight Materials for Aircraft Applications," Materials Characterization, Vol. 35, No. 1, 1995, pp. 41-67. 

  3. Imai, T., Sawa, F., Nakano, T., Shimizu, T., Kozako, M., and Tanaka, T., "Effects of Nano- and Micro-filler Mixture on Electrical Insulation Properties of Epoxy Based Composites," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 2, 2006, pp. 319-326. 

  4. Zheng, Y., Kim, C., Wang, G., Wei, P., and Jiang, P., "Epoxy/nano-silica Composites: Curing Kinetics, Glass Transition Temperatures, Dielectric, and Thermal-mechanical Performances," Journal of Applied Polymer Science, Vol. 111, No. 2, 2009, pp. 917-927. 

  5. Pan, Y., Igora, L., and Pelegri, A.A., "Numerical Generation of a Random Chopped Fiber Composite RVE and Its Elastic Properties," Composite Science and Technology, Vol. 68, No. 13, 2008, pp. 2792-2798. 

  6. Wang, H.W., Zhou, H.W., Peng, R.D., and Mishnaevsky, L., "Nanoreinforced Polymer Composites: 3D FEM Modeling with Effective Interface Concept," Composite Science and Technology, Vol. 71, No. 7, 2011, pp. 980-988. 

  7. Doghri, I., and Ouaar, A., "Homogenization of Two-phase Elasto-plastic Composite Materials and Structures: Study of Tangent Operators, Cyclic Plasticity and Numerical Algorithms," International Journal of Solids and Structures, Vol. 40, No. 7, 2003, pp. 1681-1712. 

  8. Lee, S., Kim, Y., Lee, J., and Ryu, S., "Applicability of the Interface Spring Model for Micromechanical Analyses with Interfacial Imperfections to Predict the Modified Exterior Eshelby Tensor and Effective Modulus," Mathematics and Mechanics of Solids, Vol. 24, No. 9, 2019, pp. 2944-2960. 

  9. Lee, S., Lee, J., Ryu, B., and Ryu, S., "A Micromechanics-based Analytical Solution for the Effective Thermal Conductivity of Composites with Orthotropic Matrices and Interfacial Thermal Resistance," Scientific Reports, Vol. 8, No. 1, 2018, 7266. 

  10. Mortazavi, B., Baniassadi, M., Bardon, J., and Ahzi, S., "Modeling of Two-phase Random Composite Materials by Finite Element, Mori-Tanaka and Strong Contrast Methods," Composite Part B: Engineering, Vol. 45, No. 1, 2013, pp. 1117-1125. 

  11. Giordano, S., and Palla, P.L., "Dielectric behavior of anisotropic inhomogeneities: interior and exterior Eshelby tensors," Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 41, 2008, 415205. 

  12. Bednarcyk, B.A., Aboudi, J., and Arnold, S.M., "Micromechanics of Composite Materials Governed by Vector Constitutive Laws," International Journal of Solids and Structures, Vol. 110-111, 2017, pp. 137-151. 

  13. Lee, S., Jung, J., and Ryu, S., "Micromechanics-based Prediction of the Effective Properties of Piezoelectric Composite Having Interfacial Imperfections," Composite Structures, Vol. 240, 2020, 112076. 

  14. Odegard, G.M., "Constitutive Modeling of Piezoelectric Polymer Composites," Acta Materialia, Vol. 52, No. 18, 2004, pp. 5315-5330. 

  15. Huang, J.H., and Kuo, W-S., "Micromechanics Determination of the Effective Properties of Piezoelectric Composites Containing Spatially Oriented Short Fibers," Acta Materialia, Vol. 44, No. 12, 1996, pp. 4889-4898. 

  16. Martinez-Ayuso, G., Friswell, M.I., Adhikari, S., Khodaparast, H.H., and Berger, H., "Homogenization of Porous Piezoelectric Materials," International Journal of Solids and Structures, Vol. 113-114, 2017, pp. 218-229. 

  17. Jung, J., Lee, S., Ryu, B., and Ryu, S., "Investigation of Effective Thermoelectric Properties of Composite with Interfacial Resistance Using Micromechanics-based Homogenisation," International Journal of Heat and Mass Transfer, Vol. 144, 2019, 118620. 

  18. Xu, Y., and Yagi, K., "Automatic FEM Model Generation for Evaluating Thermal Conductivity of Composite with Random Materials Arrangement," Computational Materials Science, Vol. 30, No. 3-4, 2004, pp. 242-250. 

  19. Lee, D., and Suh, N., Axiomatic Design and Fabrication of Composite Structures Applications in Robots, Machine Tools, and Automobiles, NY Oxford University Press., New York, USA, 2005. 

  20. Kim, Y., Kim, Y., Lee, T-I., Kim, T-S., and Ryu, S., "An Extended Analytic Model for the Elastic Properties of Platelet-staggered Composites and Its Application to 3D Printed Structures," Composite Structures, Vol. 189, 2018, pp. 27-36. 

  21. Mura, T., Micromechanics of Defects in Solids, Kluwer Academic Publishers, Netherlands, 1982. 

  22. Benveniste, Y., "A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials," Mechanics and Materials, Vol. 6, No. 2, 1987, pp. 147-157. 

  23. Hill, R., "A Self-consistent Mechanics of Composite Materials," Journal of the Mechanics and Physics of Solids, Vol. 13, No. 4, 1965, pp. 213-222. 

  24. Castaneda, P.P., and Tiberio, E., "A Second-order Homogenization Method in Finite Elasticity and Applications to Black-filled Elastomers," Journal of the Mechanics and Physics of Solids, Vol. 48, No. 6-7, 2000, pp. 1389-1411. 

  25. Wu, L., Noels, L., Adam, L., and Doghri, I., "A Combined Incremental-secant Mean-field Homogenization Scheme with Per-phase Residual Strains for Elasto-plastic Composites," International Journal of Plasticity, Vol. 51, 2013, pp. 80-102. 

  26. Castaneda, P.P., "The Effective Mechanical Properties of Nonlinear Isotropic Composites," Journal of the Mechanics and Physics of Solids, Vol. 39, No. 1, 1991, pp. 45-71. 

  27. Eshelby, J.D., "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proceedings of the Royal Society A, Vol. 241, No. 1226, 1957, pp. 376-396. 

  28. Jun, T-S., and Korsunsky, A.M., "Evaluation of Residual Stresses and Strains Using the Eigenstrain Reconstruction Method," International Journal of Solids and Structures, Vol. 47, No. 13, 2010, pp. 1678-1686. 

  29. Chiu, Y.P., "On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space," Journal of Applied Mechanics, Vol. 44, No. 4, 1977, pp. 587-590. 

  30. Dvorak, G.J., and Benveniste, Y., "On Transformation Strain and Uniform Fields In Multiphase Elastic Media," Proceedings of the Royal Society A, Vol. 437, No. 1900, 1992, pp. 291-310. 

  31. Lee, S., Lee, J., and Ryu, S., "Modified Eshelby Tensor for an Anisotropic Matrix with Interfacial Damage," Mathematics and Mechanics of Solids, Vol. 24, No. 6, 2019, pp. 1749-1762. 

  32. Lee, S., and Ryu, S., "Theoretical Study of the Effective Modulus of a Composite Considering the Orientation Distribution of the Fillers and the Interfacial Damage," European Journal of Mechanics - A Solids, Vol. 72, 2018, pp. 79-87. 

  33. Ryu, S., Lee, S., Jung, J., Lee, J., and Kim, Y., "Micromechanics-based Homogenization of the Effective Physical Properties of Composites with an Anisotropic Matrix and Interfacial Imperfections," Frontiers in Materials, Vol. 6, No. 21, 2019, pp. 1-17. 

  34. Dunn, M.L., and Taya, M., "Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites," International Journal of Solids and Structures, Vol. 30, No. 2, 1993, pp. 161-175. 

  35. Fu, H., and Cohen, R.E., "Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-crystal Piezoelectrics," Nature, No. 403, No. 6767, 2000, pp. 281-283. 

  36. Zhao, L-D., Lo, S-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., and Kanatzidis, M.G., "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals," Nature, No. 508, No. 7496, 2014, pp. 373-377. 

  37. Barnett, D.M., and Lothe, J., "Dislocation and Line Charges in Anisotropic Piezoelectric Insulators," Physics Status Solidi (b), Vol. 67, No. 1, 1975, pp. 105-111. 

  38. Duschlbauer, D., Bohm, H.J., and Pettermann, H.E., "Computational Simulation of Composites Reinforced by Planar Random Fibers: Homogenization and Localization by Unit Cell and Mean Field Approaches," Journal of Composite Materials, Vol. 40, No. 24, 2006, pp. 2217-2234. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로