$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인공습지의 성능향상을 위한 다기능 설계기법 개발
Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance 원문보기

한국습지학회지 = Journal of wetlands research, v.22 no.2, 2020년, pp.161 - 170  

(공주대학교 토목 환경 공학과) ,  최혜선 (공주대학교 토목 환경 공학과) ,  김이형 (공주대학교 토목 환경 공학과)

초록
AI-Helper 아이콘AI-Helper

농업비점오염에 의한 수질문제 해결을 위하여 인공습지 조성이 늘어나고 있으나 긴 체류시간과 긴 일조량 등으로 인하여 습지 내 조류 발생 등의 문제가 지속적으로 발생하고 있다. 본 연구는 농업 비점오염원관리를 위하여 조성된 인공습지의 효율을 평가하여 자연기반 능력이 향상된 고도화된 인공습지 개선방안을 제시하고자 수행되었다. 인공습지의 성능평가는 구성성분(물, 퇴적물 및 식물)의 모니터링을 통해 구성성분이 시스템의 처리 성능에 주는 기여도 평가를 통해 수행되었다. 건기시에는 식물성 플랑크톤의 과다성장, 긴 체류시간 및 일조량 과다로 습지내 탁도 및 미립자 농도가 각각 80~197 % 및 10~87 %정도 증가하는 것으로 나타났다. 그러나 강우시에는 습지내 적절한 물 순환과 지속적인 물 흐름으로 미립자, 유기물 및 영양분의 농도가 43 ~ 70 %, 22 ~ 49 %, 15 ~ 69 % 정도 감소하는 것으로 나타났다. 이러한 연구결과로 볼 때 인공습지가 가진 문제해결을 위해서는 자연습지가 가진 안정적 물 흐름이 필요하다는 것을 알수 있다. 그러나 일정수심을 유지하도록 되어있는 인공습지 설계기준은 건기와 강우기가 뚜렷하게 나타나는 한국적 기후상황에 타당하지 않다. 따라서 본 연구에서는 인공습지가 가진 문제를 해결하고 홍수관리, 수질 관리 및 환경 기능을 지속적으로 유지할 수 있도록 다기능 설계기법을 개념화하였다.

Abstract AI-Helper 아이콘AI-Helper

Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted ...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Macrophytes also enhanced the nutrient removal efficiency of the system through nutrient uptake mechanisms; however, intermittent loading may limit the uptake capabilities of the plants. Based on the patterns of pollutant removal and analyses of wetland components, a multifunctional design was conceptualized to improve the flood control, water quality management, and environmental functions of the CW. Varying water levels in wetland cells and different elevation of outlet ports in the CW design can induce effective water circulation and provide a favorable environment for the biotic components of CW systems.
  • During storm events, the first sample was collected after an observed increase in water level to account for the runoff delay in the catchment area. Succeeding samples were collected at 5, 10, 15, 30, and 60-minute intervals. Additional six samples were collected at an hourly interval to complete the 12 inflow and outflow samples.
  • Moreover, a multifunctional design was not yet conceptualized to improve CW processes. This study evaluated the contributory factors affecting the treatment performance of a CW by examining the vital components of the facility. A multifunctional design concept was also developed based on the assessment of the current CW design in order to optimize facility functions and operations.
  • Nature-based approaches provide effective and low-cost alternatives for treating polluted water. This study successfully evaluated the performance of a CW in reducing pollutant loads from a polluted river through an in-depth analyses of primary wetland components. During dry days, lack of inflow prompted stagnation of water and proliferation of phytoplankton in the system which resulted to 80% to 197%and 10% to 87% increase in turbidity and TSS concentrations,respectively, at different treatment zones.

대상 데이터

  • The CW utilized in the study is a free water surface CW located midstream of Geum River at Gongju City, South Korea. The facility was designed and operated by the Ministry of Environment to treat a portion of an intermittent streamimpacted by agricultural activities.
  • On storm events, combined stream discharge and stormwater runoff from a 465-hacatchment area composed of 73% forest, 25% agricultural, and 2% urban land use types was also redirected to the CW for treatment. The facility has a surface area of 3,282 m2, storage volume amounting to 2,957 m3, and a design hydraulic retention time (HRT) of 16.8 hours. The first treatment unit was consisted of a sedimentation zone intended to remove large particles by means of gravitational settling.

이론/모형

  • Representative samples were cut to ground level and oven-dried to determine the plant biomass.Kjeldahl method was used to quantify N and P concentrationsin plant tissues.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Alihan, J.C., Maniquiz-Redillas, M., Choi, J., Flores, P.E., Kim, L.-H., 2017. Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands. J. Wetl. Res. https://doi.org/10.17663/jwr.2017.19.1.037 

  2. APHA, 1990. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC. Stand. Methods. https://doi.org/ISBN 9780875532356 

  3. Bae, S., Seo, D., 2018. Analysis and modeling of algal blooms in the Nakdong River, Korea. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2018.01.019 

  4. Boyd, C.E., 2015. Phosphorus, in: Water Quality. Springer, Cham, pp. 243-261. https://doi.org/https://doi.org/10.1007/978-3-319-17446-4 

  5. Carter, M.R.; Gregorich, E.G., 2007. Soil sampling and methods of analysis. CRC Press, Boca Raton. 

  6. Chaurand, G., 2019. Performance of subsurface flow wetlands for the treatment of airport runoff. Aalto University. 

  7. Chun, Y.M., Choi, Y.D., 2009. Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into Typha spp. (cattail) wetlands in northwestern Indiana, USA. J. Plant Biol. https://doi.org/10.1007/s12374-009-9024-z 

  8. Dong, Y., Kayranli, B., Scholz, M., Harrington, R., 2013. Nutrient release from integrated constructed wetlands sediment receiving farmyard run-off and domestic wastewater. Water Environ. J. 27, 439-452. https://doi.org/10.1111/j.1747-6593.2012.00361.x 

  9. Dzakpasu, M., Wang, X., Zheng, Y., Ge, Y., Xiong, J., Zhao, Y., 2015. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment. Water Sci. Technol. https://doi.org/10.2166/wst.2015.049 

  10. Emery, S.L., Perry, J.A., 1995. Aboveground Biomass and Phosphorus Concentrations of Lythrum salicaria (Purple Loosestrife) and Typha spp. (Cattail) in 12 Minnesota Wetlands. Am. Midl. Nat. https://doi.org/10.2307/2426309 

  11. Ge, Z., An, R., Fang, S., Lin, P., Li, C., Xue, J., Yu, S., 2017. Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland. Scientifica (Cairo). https://doi.org/10.1155/2017/8539093 

  12. Geranmayeh, P., Johannesson, K.M., Ulen, B., Tonderski, K.S., 2018. Particle deposition, resuspension and phosphorus accumulation in small constructed wetlands. Ambio. https://doi.org/10.1007/s13280-017-0992-9 

  13. Goulding, K.W.T., 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. https://doi.org/10.1111/sum.12270 

  14. Hashmi, M.Z., Yu, C., Shen, H., Duan, D., Shen, C., Lou, L., Chen, Y., 2013. Risk assessment of heavy metals pollution in agricultural soils of siling reservoir watershed in Zhejiang province, China. Biomed Res. Int. https://doi.org/10.1155/2013/590306 

  15. Jarvie, H.P., Sharpley, A.N., Withers, P.J.A., Scott, J.T., Haggard, B.E., Neal, C., 2013. Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and "Postnormal" Science. J. Environ. Qual. https://doi.org/10.2134/jeq2012.0085 

  16. Jeke, N.N., Zvomuya, F., Cicek, N., Ross, L., Badiou, P., 2019. Nitrogen and Phosphorus Phytoextraction by Cattail (Typha spp.) during Wetland-based Phytoremediation of an End-of-Life Municipal Lagoon. J. Environ. Qual. https://doi.org/10.2134/jeq2018.05.0184 

  17. Johannesson, K.M., Kynkaanniemi, P., Ulen, B., Weisner, S.E.B., Tonderski, K.S., 2015. Phosphorus and particle retention in constructed wetlands-A catchment comparison. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2014.08.014 

  18. Jung, S., Shin, M., Kim, J., Eum, J., Lee, Y., Lee, J., Choi, Y., You, K., Owen, J., Kim, B., 2016. The effects of Asian summer monsoons on algal blooms in reservoirs. Inl. Waters. https://doi.org/10.5268/IW-6.3.967 

  19. Kasak, K., Kill, K., Parn, J., Mander, U., 2018. Efficiency of a newly established in-stream constructed wetland treating diffuse agricultural pollution. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2018.05.015 

  20. Kim, S., Chung, S., Park, H., Cho, Y., Lee, H., 2019. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water (Switzerland). https://doi.org/10.3390/w11061163 

  21. King, K.W., Williams, M.R., Macrae, M.L., Fausey, N.R., Frankenberger, J., Smith, D.R., Kleinman, P.J.A., Brown, L.C., 2015. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. https://doi.org/10.2134/jeq2014.04.0163 

  22. Lee, Jeong-Yong; Kang, Chang-Guk; Lee, So-Young; Kim, L.-H., 2011. Application of Free Water Surface Constructed Wetland for NPS COntrol in Livestock Watershed Area. J. Wetl. Res. 13, 481-488. https://doi.org/https://doi.org/10.17663/JWR.2011.13.3.481 

  23. Luo, K., Wu, C., Zheng, H., Hu, X., He, Q., 2019. Analyzing the algal bloom risk and its relationship with environmental variables in urban landscape water, in: IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/376/1/012071 

  24. Mallin, M.A., McIver, M.R., Robuck, A.R., Dickens, A.K., 2015. Industrial Swine and Poultry Production Causes Chronic Nutrient and Fecal Microbial Stream Pollution. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-015-2669-y 

  25. Maniquiz, M.C., Choi, J.Y., Lee, S.Y., Kang, C.G., Yi, G.S., Kim, L.H., 2012. System design and treatment efficiency of a surface flow constructed wetland receiving runoff impacted stream water. Water Sci. Technol. https://doi.org/10.2166/wst.2012.869 

  26. Mercado, J.M.R., Maniquiz-Redillas, M.C., Kim, L.-H., 2013. Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area. J. Wetl. Res. https://doi.org/10.17663/jwr.2013.15.2.215 

  27. Mercado, J.M.R., Maniquiz-Redillas, M.C., Kim, L.H., 2017. Assessment and development of design criteria for a hybrid stormwater treatment system. Desalin. Water Treat. https://doi.org/10.5004/dwt.2017.11447 

  28. Mulligan, C., Fukue, M., Sato, Y., 2009. Sediments contamination and sustainable remediation, Sediments Contamination and Sustainable Remediation. https://doi.org/10.1201/9781420062236 

  29. Mwanyika, F.T., Ogendi, G.M., Kipkemboi, J.., 2016. Removal of heavy metals from wastewater by a constructed wetland system at Egerton University, Kenya. IOSR J. Environ. Sci. Toxicol. Food Technol. 10, 15-20. 

  30. Reddy, K.R., D'Angelo, E.M., 1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands, in: Water Science and Technology. https://doi.org/10.1016/S0273-1223(97)00046-2 

  31. Rehman, F., Pervez, A., Khattak, B.N., Ahmad, R., 2017. Constructed Wetlands: Perspectives of the Oxygen Released in the Rhizosphere of Macrophytes. Clean - Soil, Air, Water. https://doi.org/10.1002/clen.201600054 

  32. Ribaudo, M., Delgado, J., Hansen, L.R., Livingston, M., Mosheim, R., Williamson, J., 2012. Nitrogen in agricultural systems: Implications for conservation policy, in: Nitrogen Use in U.S. Agriculture: Implications and Management. https://doi.org/10.2139/ssrn.2115532 

  33. Sfakianakis, D.G., Renieri, E., Kentouri, M., Tsatsakis, A.M., 2015. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. https://doi.org/10.1016/j.envres.2014.12.014 

  34. Shi, T., Ma, J., Wu, X., Ju, T., Lin, X., Zhang, Y., Li, X., Gong, Y., Hou, H., Zhao, L., Wu, F., 2018. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2018.08.016 

  35. Sima, J., Svoboda, L., Seda, M., Krejsa, J., Jahodova, J., 2017. Removal of selected risk elements from wastewater in a horizontal subsurface flow constructed wetland. Water Environ. J. https://doi.org/10.1111/wej.12269 

  36. Song, X., Ehde, P.M., Weisner, S.E.B., 2019. Effects of water depth and phosphorus availability on nitrogen removal in agricultural wetlands. Water (Switzerland). https://doi.org/10.3390/W11122626 

  37. Srivastava, A., Ahn, C.Y., Asthana, R.K., Lee, H.G., Oh, H.M., 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. Biomed Res. Int. https://doi.org/10.1155/2015/584696 

  38. Su, X., Wang, H., Zhang, Y., 2013. Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China. Water Resour. Manag. https://doi.org/10.1007/s11269-013-0330-3 

  39. Tian, S., Wang, Z., Shang, H., 2011. Study on the self-purification of Juma River, in: Procedia Environmental Sciences. https://doi.org/10.1016/j.proenv.2011.12.199 

  40. Tobio, Jevelyn Ann S; Maniquiz-Redillas, Marla C; Lee, Yuwha; Kim, L.-H., 2012. Characteristics of Pollulant Concentration from Livestock Wastewater Effluent Combined With Stormwater Runoff. J. Korean Soc. Water Environ. 28, 896-901. 

  41. Travaini-Lima, F., Sipauba-Tavares, L.H., 2012. Efficiency of a constructed wetland for wastewaters treatment. Acta Limnol. Bras. https://doi.org/10.1590/s2179-975x2012005000043 

  42. Ulrich, K.E., Burton, T.M., 1988. An experimental comparison of the dry matter and nutrient distribution patterns of Typha latifolia L., Typha angustifolia L., Sparganium eurycarpum Engelm. and Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot. https://doi.org/10.1016/0304-3770(88)90093-9 

  43. Vymazal, J., Kropfelova, L., 2008. Nitrogen and phosphorus standing stock in Phalaris arundinacea and Phragmites australis in a constructed treatment wetland: 3-year study, in: Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340701787662 

  44. Weisner, S.E.B., Eriksson, P.G., Graneli, W., Leonardson, L., 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio. https://doi.org/10.2307/4314237 

  45. Yan, Liying, Zhang, S., Lin, D., Guo, C., Yan, Lingling, Wang, S., He, Z., 2018. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.11.234 

  46. Zhang, T., Jiang, R., Deng, Y., 2017. Phosphorus Recovery by Struvite Crystallization from Livestock Wastewater and Reuse as Fertilizer: A Review, in: Physico-Chemical Wastewater Treatment and Resource Recovery. https://doi.org/10.5772/65692 

  47. Zhao, Y., Xia, X., Yang, Z., 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. J. Environ. Sci. (China). https://doi.org/10.1016/S1001-0742(12)60004-7 

  48. Zhou, Jun, Du, B., Wang, Z., Zhang, W., Xu, L., Fan, X., Liu, X., Zhou, Jing, 2019. Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2018.08.091 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로