$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Progress in High-Luminance Quantum Dot Light-Emitting Diodes 원문보기

Current optics and photonics, v.4 no.3, 2020년, pp.161 - 173  

Rhee, Seunghyun (Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center (ISRC), Seoul National University) ,  Kim, Kyunghwan (Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center (ISRC), Seoul National University) ,  Roh, Jeongkyun (Department of Electrical Engineering, Pusan National University) ,  Kwak, Jeonghun (Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center (ISRC), Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Colloidal quantum dots (QDs) have gained tremendous attention as a key material for highly advanced display technologies. The performance of QD light-emitting diodes (QLEDs) has improved significantly over the past two decades, owing to notable progress in both material development and device engine...

주제어

표/그림 (8)

참고문헌 (82)

  1. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, "R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices," Adv. Mater. 26, 6387-6393 (2014). 

  2. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, "Bright and efficient full-color colloidal quantum dot lightemitting diodes using an inverted device structure," Nano Lett. 12, 2362-2366 (2012). 

  3. S. J. Lim, M. U. Zahid, P. Le, L. Ma, D. Entenberg, A. S. Harney, J. Condeelis, and A. M. Smith, "Brightness-equalized quantum dots," Nat. Commun. 6, 8210 (2015). 

  4. J. Lim, Y. S. Park, K. Wu, H. J. Yun, and V. I. Klimov, "Droop-free colloidal quantum dot light-emitting diodes," Nano Lett. 18, 6645-6653 (2018). 

  5. H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. L. Du, L. S. Li, and Z. Zhang, "Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency," Nat. Photonics 13, 192-197 (2019). 

  6. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, "High-efficiency light-emitting devices based on quantum dots with tailored nanostructures," Nat. Photonics 9, 259-266 (2015). 

  7. J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, and L. S. Li, "Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer," Adv. Funct. Mater. 29, 1808377 (2019). 

  8. X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, "Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination," Nat. Photonics 12, 159-164 (2018). 

  9. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, "Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes," Nat. Commun. 4, 2661 (2013). 

  10. J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, and V. I. Klimov, "Spectroscopic and device aspects of nanocrystal quantum dots," Chem. Rev. 116, 10513-10622 (2016). 

  11. W. K. Bae and J. Lim, "Nanostructured colloidal quantum dots for efficient electroluminescence devices," Korean J. Chem. Eng. 36, 173-185 (2019). 

  12. C. Y. Han and H. Yang, "Development of colloidal quantum dots for electrically driven light-emitting devices," J. Korean Ceram. Soc. 54, 449-469 (2017). 

  13. Y. Shang and Z. Ning, "Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes," Natl. Sci. Rev. 4, 170-183 (2017). 

  14. M. K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays," npj Flexible Electron. 2, 10 (2018). 

  15. F. Chen, Z. Guan, and A. Tang, "Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes," J. Mater. Chem. C 6, 10958-10981 (2018). 

  16. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer," Nature 370, 354-357 (1994). 

  17. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002). 

  18. A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, and V. I. Klimov, "Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers," Nano Lett. 5, 1039-1044 (2005). 

  19. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature 515, 96-99 (2014). 

  20. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, "Preparation of highly luminescent nanocrystals and their application to light-emitting diodes," Adv. Mater. 19, 1927-1932 (2007). 

  21. Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, "High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering," Opt. Express 24, 25955-25963 (2016). 

  22. C. Jiang, H. Liu, B. Liu, Z. Zhong, J. Zou, J. Wang, L. Wang, J. Peng, and Y. Cao, "Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers," Org. Electron. 31, 82-89 (2016). 

  23. D. Kim, Y. Fu, S. Kim, W. Lee, K.-H. Lee, H. K. Chung, H.-J. Lee, H. Yang, and H. Chae, "Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device," ACS Nano 11, 1982-1990 (2017). 

  24. J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, "Small molecule-modified hole transport layer targeting low turn-on-voltage, bright, and efficient full-color quantum dot light emitting diodes," ACS Appl. Mater. Interfaces 10, 3865-3873 (2018). 

  25. S. Rhee, J. H. Chang, D. Hahm, K. Kim, B. G. Jeong, H. J. Lee, J. Lim, K. Char, C. Lee, and W. K. Bae, ""Positive incentive" approach to enhance the operational stability of quantum dot-based light-emitting diodes," ACS Appl. Mater. Interfaces 11, 40252-40259 (2019). 

  26. G. Liu , X. Zhou, and S. Chen, "Very bright and efficient microcavity top-emitting quantum dot light-emitting diodes with Ag electrodes," ACS Appl. Mater. Interfaces 8, 16768-16775 (2016). 

  27. J. H. Oh, D. B. Choi, K. H. Lee, H. Yang, and Y. R. Do, "Enhanced light extraction from green quantum dot light-emitting diodes by attaching microstructure arrayed films," IEEE J. Sel. Top. Quantum Electron. 22, 42-47 (2016). 

  28. K. Ding, Y. Fang, S. Dong, H. Chen, B. Luo, K. Jiang, H. Gu, L. Fan, S. Liu, B. Hu, and L. Wang, "24.1% external quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes," Adv. Opt. Mater. 6, 1800347 (2018). 

  29. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nat. Photonics 7, 407-412 (2013). 

  30. L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, "Blue quantum dot light-emitting diodes with high electroluminescent efficiency," ACS Appl. Mater. Interfaces 9, 38755-38760 (2017). 

  31. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, "Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers," ACS Appl. Mater. Interfaces 10, 17295-17300 (2018). 

  32. Y.-H. Won, O. Cho, T. Kim, D.-Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang, "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes," Nature 575, 634-638 (2019). 

  33. Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang, and S. Chen, "Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes," ACS Nano 13, 11433-11442 (2019). 

  34. Y. Altintas, S. Genc, M. Y. Talpur, and E. Mutlugun, "CdSe/ZnS quantum dot films for high performance flexible lighting and display applications," Nanotechnology 27, 295604 (2016). 

  35. W. K. Bae, K. Char, H. Hur, and S. Lee, "Single-step synthesis of quantum dots with chemical composition gradients," Chem. Mat. 20, 531-539 (2008). 

  36. H. Zhang, S. Chen, and X. W. Sun, "Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%," ACS Nano 12, 697-704 (2018). 

  37. Q. Su n, Y . A. Wang, L . S. L i, D . Wang, T. Z hu , J. X u, C. Yang, and Y. Li, "Bright, multicoloured light-emitting diodes based on quantum dots," Nat. Photonics 1, 717-722 (2007). 

  38. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, "High-performance crosslinked colloidal quantum-dot light-emitting diodes," Nat. Photonics 3, 341-345 (2009). 

  39. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures," Nat. Photonics 5, 543-548 (2011). 

  40. J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y.-S. Park, V. I. Klimov, C. Lee, D. C. Lee, and W. K. Bae, "Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1-XCdXS core/shell heterostructured quantum dots," Adv. Mater. 26, 8034-8040 (2014). 

  41. J.-M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, "NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices," Nano Lett. 6, 2991-2994 (2006). 

  42. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, "High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes," Nano Lett. 15, 1211-1216 (2015). 

  43. H. Zhang, X. Sun, and S. Chen, "Over 100 cd $A^{-1}$ efficient quantum dot light-emitting diodes with inverted tandem structure," Adv. Funct. Mater. 27, 1700610 (2017). 

  44. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H . Mattou si, R. O ber, K . F. J ensen, a nd M . G. Bawendi, "(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B 101, 9463-9475 (1997). 

  45. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, "Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility," J. Am. Chem. Soc. 119, 7019-7029 (1997). 

  46. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, "Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylaminetrioctylphosphine oxide-trioctylphospine mixture," Nano Lett. 1, 207-211 (2001). 

  47. D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H. Weller, "CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals," J. Phys. Chem. B 108, 18826-18831 (2004). 

  48. E. Jang, S. Jun, H. Jang, J. Llim, B. Kim, and Y. Kim, "White-light-emitting diodes with quantum dot color converters for display backlights," Adv. Mater. 22, 3076-3080 (2010). 

  49. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and characterization of highly luminescent CdSe-Core CdS/ $Zn_{0.5}Cd_{0.5}S/ZnS$ multishell nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005). 

  50. W. K. Bae, L. A. Padilha, Y. S. Park, H. McDaniel, I. Robel, J. M. Pietryga, and V. I. Klimov, "Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of auger recombination," ACS Nano 7, 3411-3419 (2013). 

  51. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, "Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS qu antum dots," ACS Nano 7, 9019-9026 (2013). 

  52. R. E. Bailey and S. Nie, "Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size," J. Am. Chem. Soc. 125, 7100-7106 (2003). 

  53. S. Dey, S. Chen, S. Thota, M. R. Shakil, S. L. Suib, and J. Zhao, "Effect of gradient alloying on photoluminescence blinking of single $CdS_xSe_{1-x}$ nanocrystals," J. Phys. Chem. C 120, 20547-20554 (2016). 

  54. J. Zhang, Q. Yang, H. Cao, C. I. Ratcliffe, D. Kingston, Q. Y. Chen, J. Ouyang, X. Wu, D. M. Leek, F. S. Riehle, and K. Yu, "Bright gradient-alloyed $CdSexS_{1-x}$ quantum dots exhibiting cyan-blue emission," Chem. Mater. 28, 618-625 (2016). 

  55. D. Kim and D. C. Lee, "Surface ligands as permeation barrier in the growth and assembly of anisotropic semiconductor nanocrystals," J. Phys. Chem. Lett. 11, 2647-2657 (2020). 

  56. H. Lee, D.-E. Yoon, S. Koh, M. S. Kang, J. Lim, and D. C. Lee, "Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals," Chem. Sci. 11, 2318-2329 (2020). 

  57. H. Zhang, J. Jang, W. Liu, and D. V. Talapin, "Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands," ACS Nano 8, 7359-7369 (2014). 

  58. B.-H. Kang, J.-S. Lee, S.-W. Lee, S.-W. Kim, J.-W. Lee, S.-A. Gopalan, J.-S. Park, D.-H. Kwon, J.-H. Bae, H.-R. Kim, and S.-W. Kang, "Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices," Sci. Rep. 6, 34659 (2016). 

  59. Z. Li, Y. Hu, H. Shen, Q. Lin, L. Wang, H. Wang, W. Zhao, and L. S. Li, "Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots," Laser Photon. Rev. 11, 1600227 (2017). 

  60. J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L. A. Padilha, D. C. Lee, C. Lee, K. Char, and W. K. Bae, "Unraveling the origin of operational instability of quantum dot based light-emitting diodes," ACS Nano 12, 10231-10239 (2018). 

  61. H. Shen, Q. Lin, W. Cao, C. Yang, N. T. Shewmon, H. Wang, J. Niu, L. S. Li, and J. Xue, "Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots," Nanoscale 9, 13583-13591 (2017). 

  62. X. Xiong, C. Wei, L. Xie, M. Chen, P. Tang, W. Shen, Z. Deng, X. Li, Y. Duan, W. Su, H. Zeng, and Z. Cui, "Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface," Org. Electron. 73, 247-254 (2019). 

  63. Y. Lee, B. G. Jeong, H. Roh, J. Roh, J. Han, D. C. Lee, W. K. Bae, J. Y. Kim, and C. Lee, "Enhanced lifetime and efficiency of red quantum dot light-emitting diodes with Y-doped ZnO sol-gel electron-transport layers by reducing excess electron injection," Adv. Quantum Technol. 1, 1700006 (2018). 

  64. J.-H. Kim, C.-Y. Han, K.-H. Lee, K.-S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, "Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer," Chem. Mater. 27, 197-204 (2015). 

  65. X. Jin, C. Chang, W. Zhao, S. Huang, X. Gu, Q. Zhang, F. Li, Y. Zhang, and Q. Li, "Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer," ACS Appl. Mater. Interfaces 10, 15803-15811 (2018). 

  66. Z. Li, "Enhanced performance of quantum dots light-emitting diodes: The case of $Al_2O_3$ electron blocking layer," Vacuum 137, 38-41 (2017). 

  67. I. Cho, H. Jung, B. G. Jeong, J. H. Chang, Y. Kim, K. Char, D. C. Lee, C. Lee, J. Cho, and W. K. Bae, "Multifunctional dendrimer ligands for high efficiency, solution-processed quantum dot light-emitting diodes," ACS Nano 11, 684-692 (2017). 

  68. J.-R. Gong, L.-J. Wan, S.-B. Lei, C.-L. Bai, X.-H. Zhang, and S.-T. Lee, "Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study," J. Phys. Chem. B 109, 1675-1682 (2005). 

  69. D. Y. Kondakov, W. C. Lenhart, and W. F. Nichols, "Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products," J. Appl. Phys. 101, 024512 (2007). 

  70. S. Schmidbauer, A. Hohenleutner, and B. Konig, "Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials," Adv. Mater. 25, 2114-2129 (2013). 

  71. K. Yoshida, T. Matsushima, Y. Shiihara, H. Kuwae, J. Mizuno, and C. Adachi, "Joule heat-induced breakdown of organic thin-film devices under pulse operation," J. Appl. Phys. 121, 195503 (2017). 

  72. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. D. Donega, and A. Meijerink, "High-temperature luminescence quenching of colloidal quantum dots," ACS Nano 6, 9058-9067 (2012). 

  73. Q. Yue, W. Li, F. Kong, and K. Li, "Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures," Adv. Mater. Sci. Eng. 2012, 985762 (2012). 

  74. W. D. Kim, D. Kim, D.-E. Yoon, H. Lee, J. Lim, W. K. Bae, and D. C. Lee, "Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals," Chem. Mater. 31, 3066-3082 (2019). 

  75. G. W. Park, S. J. Lee, and J. H. Ko, "Comparison of out-coupling efficiency between bottom-emission and top-emission organic light-emitting diodes using FDTD simulation," J. Nanoelectron. Optoelectron. 11, 229-233 (2016). 

  76. S. Hofmann, M. Thomschke, B. Lussem, and K. Leo, "Top-emitting organic light-emitting diodes," Opt. Express 19, A1250-A1264 (2011). 

  77. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000). 

  78. F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, "Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy," Nature 544, 75-79 (2017). 

  79. J. Lim, Y.-S. Park, and V. I. Klimov, "Optical gain in colloidal quantum dots achieved with direct-current electrical pumping," Nat. Mater. 17, 42-49 (2018). 

  80. Y. S. Park, W. K. Bae, T. Baker, J. Lim, and V. I. Klimov, "Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces," Nano Lett. 15, 7319-7328 (2015). 

  81. J. Roh, Y.-S. Park, J. Lim, and V. I. Klimov, "Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity," Nat. Commun. 11, 271 (2020). 

  82. O. V. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, and V. I. Klimov, "Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity," Science 365, 672-675 (2019). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로