$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flavonoids as anti-inflammatory and neuroprotective agents 원문보기

International journal of oral biology : official journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, v.45 no.2, 2020년, pp.33 - 41  

Lee, Heesu (Department of Anatomy, College of Dentistry, Gangneung-Wonju National University) ,  Selvaraj, Baskar (Natural Product Research Center, Korea Institute of Science and Technology) ,  Yoo, Ki Yeon (Department of Anatomy, College of Dentistry, Gangneung-Wonju National University) ,  Ko, Seong-Hee (Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University)

Abstract AI-Helper 아이콘AI-Helper

Neuroinflammation is known as the main mechanism implicated in the advancement of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The main feature of neuroinflammation is associated with the activation of microglia. The activated microglia increase proinflammatory cyt...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • The citrus flavonoids have strong free radical scavenging activities than other dietary flavonoids. The studies reveal that flavonoids such as kaempfeol, luteolin, rutin, scutellarein, and neoeriocitrin are having strong antioxidant and lipid peroxidation activities than the hesperidin, hesperetin, neohesperidin, naringenin, and naringin. Recently, Hwang et al.
본문요약 정보가 도움이 되었나요?

참고문헌 (70)

  1. Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012;33:83-97. doi: 10.1016/j.mam.2011.10.016. 

  2. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010;140:918-34. doi: 10.1016/j.cell.2010.02.016. 

  3. Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004;430:631-9. doi: 10.1038/nature02621. 

  4. Hoglund K, Salter H. Molecular biomarkers of neurodegeneration. Expert Rev Mol Diagn 2013;13:845-61. doi: 10.1586/14737159.2013.850033. 

  5. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992;59:1609-23. doi: 10.1111/j.1471-4159.1992.tb10990.x. 

  6. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 2001;98:10469-74. doi: 10.1073/pnas.171202698. 

  7. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004;36:838-49. doi: 10.1016/j.freeradbiomed.2004.01.001. 

  8. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981-90. doi: 10.1016/j.cellsig.2012.01.008. 

  9. Choi JH, Choi AY, Yoon H, Choe W, Yoon KS, Ha J, Yeo EJ, Kang I. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med 2010;42:811-22. doi:10.3858/emm.2010.42.12.084. 

  10. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83. doi: 10.1210/edrv.22.2.0428. 

  11. Tibbles LA, Woodgett JR. The stress-activated protein kinase pathways. Cell Mol Life Sci 1999;55:1230-54. doi: 10.1007/s000180050369. 

  12. Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, Holden JM. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compos Anal 2006;19(Suppl):S66-73. doi: 10.1016/j.jfca.2005.12.006. 

  13. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016;5:e47. doi: 10.1017/jns.2016.41. 

  14. Kong AN, Yu R, Chen C, Mandlekar S, Primiano T. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 2000;23:1-16. doi: 10.1007/BF02976458. 

  15. Hwang SL, Shih PH, Yen GC. Neuroprotective effects of citrus flavonoids. J Agric Food Chem 2012;60:877-85. doi: 10.1021/jf204452y. 

  16. Spencer JP. Flavonoids: modulators of brain function? Br J Nutr 2008;99 E Suppl 1:ES60-77. doi: 10.1017/S0007114508965776. 

  17. Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 2012;78:1138-45. doi: 10.1212/WNL.0b013e31824f7fc4. 

  18. Tressera-Rimbau A, Arranz S, Eder M, Vallverdu-Queralt A. Dietary polyphenols in the prevention of stroke. Oxid Med Cell Longev 2017;2017:7467962. doi: 10.1155/2017/7467962. 

  19. Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 2012;72:135-43. doi: 10.1002/ana.23594. 

  20. Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: are flavonoids doing the trick? Biomed Pharmacother 2019;109:1488-97. doi: 10.1016/j.biopha.2018.10.086. 

  21. Spencer SJ, Korosi A, Laye S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food 2017;1:7. doi: 10.1038/s41538-017-0008-y. 

  22. Panickar KS, Jang S. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia. Recent Pat Food Nutr Agric 2013;5:128-43. doi: 10.2174/1876142911305020003. 

  23. Levi F, Pasche C, La Vecchia C, Lucchini F, Franceschi S. Food groups and colorectal cancer risk. Br J Cancer 1999;79:1283-7. doi: 10.1038/sj.bjc.6690206. 

  24. Chen H, Ward MH, Graubard BI, Heineman EF, Markin RM, Potischman NA, Russell RM, Weisenburger DD, Tucker KL. Dietary patterns and adenocarcinoma of the esophagus and distal stomach. Am J Clin Nutr 2002;75:137-44. doi: 10.1093/ajcn/75.1.137. 

  25. McCullough ML, Robertson AS, Jacobs EJ, Chao A, Calle EE, Thun MJ. A prospective study of diet and stomach cancer mortality in United States men and women. Cancer Epidemiol Biomarkers Prev 2001;10:1201-5. 

  26. Feldman EB. Fruits and vegetables and the risk of stroke. Nutr Rev 2001;59(1 Pt 1):24-7. doi: 10.1111/j.1753-4887.2001.tb01902.x. 

  27. Fortes C, Forastiere F, Farchi S, Rapiti E, Pastori G, Perucci CA. Diet and overall survival in a cohort of very elderly people. Epidemiology 2000;11:440-5. doi: 10.1097/00001648-200007000-00013. 

  28. Aherne SA, O'Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 2002;18:75-81. doi: 10.1016/s0899-9007(01)00695-5. 

  29. Tapiero H, Tew KD, Ba GN, Mathe G. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 2002;56:200-7. doi: 10.1016/s0753-3322(02)00178-6. 

  30. Veitch NC, Grayer RJ. Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 2008;25:555-611. doi: 10.1039/b718040n. 

  31. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001;49:3106-12. doi: 10.1021/jf000892m. 

  32. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000;130(8S Suppl):2073S-85S. doi: 10.1093/jn/130.8.2073S. 

  33. Haghmorad D, Mahmoudi MB, Salehipour Z, Jalayer Z, Momtazi Brojeni AA, Rastin M, Kokhaei P, Mahmoudi M. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J Neuroimmunol 2017;302:23-33. doi: 10.1016/j.jneuroim.2016.11.009. 

  34. Sawmiller D, Habib A, Li S, Darlington D, Hou H, Tian J, Shytle RD, Smith A, Giunta B, Mori T, Tan J. Diosmin reduces cerebral $A\beta$ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016;299:98-106. doi: 10.1016/j.jneuroim.2016.08.018. 

  35. Cui J, Wang G, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL. Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: possible role of PPAR- $\gamma$ , Bax/Bcl-2, and caspase-3. Food Chem Toxicol 2018;121:95-108. doi: 10.1016/j.fct.2018.08.028. 

  36. Zhang Y, Jiang Y, Lu D. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-kinase (PI3K)/AKT/nuclear factor- $\kappa$ B (NF- $\kappa$ B) signaling pathway in a rat model of pneumococcal meningitis. Med Sci Monit 2019;25:2238-45. doi: 10.12659/MSM.911860. 

  37. Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci U S A 2008;105:7534-9. doi: 10.1073/pnas.0802865105. 

  38. Yao ZH, Yao XL, Zhang Y, Zhang SF, Hu JC. Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation. Neurochem Res 2018;43:806-20. doi: 10.1007/s11064-018-2482-2. 

  39. Siracusa R, Paterniti I, Impellizzeri D, Cordaro M, Crupi R, Navarra M, Cuzzocrea S, Esposito E. The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson's disease model. CNS Neurol Disord Drug Targets 2015;14:1350-65. doi: 10.2174/1871527314666150821102823. 

  40. Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol 2011;164:1008-25. doi: 10.1111/j.1476-5381.2011.01389.x. 

  41. Kouhestani S, Jafari A, Babaei P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen Res 2018;13:1827-32. doi: 10.4103/1673-5374.238714. 

  42. Li WH, Cheng X, Yang YL, Liu M, Zhang SS, Wang YH, Du GH. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res 2019;1722:146361. doi: 10.1016/j.brainres.2019.146361. 

  43. Jung UJ, Kim SR. Beneficial effects of flavonoids against Parkinson's disease. J Med Food 2018;21:421-32. doi: 10.1089/jmf.2017.4078. 

  44. Shu Z, Yang B, Zhao H, Xu B, Jiao W, Wang Q, Wang Z, Kuang H. Tangeretin exerts anti-neuroinflammatory effects via NF- $\kappa$ B modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 2014;19:275-82. doi: 10.1016/j.intimp.2014.01.011. 

  45. Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF- $\kappa$ B signaling pathways. J Agric Food Chem 2019;67:5122-34. doi: 10.1021/acs.jafc.9b00133. 

  46. Okuyama S, Miyoshi K, Tsumura Y, Amakura Y, Yoshimura M, Yoshida T, Nakajima M, Furukawa Y. 3,5,6,7,8,3',4'-heptamethoxyflavone, a citrus polymethoxylated flavone, attenuates inflammation in the mouse hippocampus. Brain Sci 2015;5:118-29. doi: 10.3390/brainsci5020118. 

  47. Betteridge DJ. What is oxidative stress? Metabolism 2000;49(2 Suppl 1):3-8. doi: 10.1016/s0026-0495(00)80077-3. 

  48. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative stress in neurodegenerative diseases. Mol Neurobiol 2016;53:4094-125. doi: 10.1007/s12035-015-9337-5. 

  49. Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013;14:24438-75. doi: 10.3390/ijms141224438. 

  50. Perez M, Cuadros R, Smith MA, Perry G, Avila J. Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett 2000;486:270-4. doi: 10.1016/s0014-5793(00)02323-1. 

  51. Xiang W, Schlachetzki JC, Helling S, Bussmann JC, Berlinghof M, Schaffer TE, Marcus K, Winkler J, Klucken J, Becker CM. Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alphasynuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity. Mol Cell Neurosci 2013;54:71-83. doi: 10.1016/j.mcn.2013.01.004. 

  52. Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci U S A 2009;106:9679-84. doi: 10.1073/pnas.0812083106. 

  53. Cohen TJ, Hwang AW, Unger T, Trojanowski JQ, Lee VM. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J 2012;31:1241-52. doi: 10.1038/emboj.2011.471. 

  54. Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035-42. doi: 10.1021/np9904509. 

  55. Lin CM, Chen CT, Lee HH, Lin JK. Prevention of cellular ROS damage by isovitexin and related flavonoids. Planta Med 2002;68:365-7. doi: 10.1055/s-2002-26753. 

  56. Miyake Y, Sakurai C, Usuda M, Fukumoto S, Hiramitsu M, Sakaida K, Osawa T, Kondo K. Difference in plasma metabolite concentration after ingestion of lemon flavonoids and their aglycones in humans. J Nutr Sci Vitaminol (Tokyo) 2006;52:54-60. doi: 10.3177/jnsv.52.54. 

  57. Prochazkova D, Bou?ova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82:513-23. doi: 10.1016/j.fitote.2011.01.018. 

  58. Badshah H, Ali T, Kim MO. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/ NF $\kappa$ B signaling pathway. Sci Rep 2016;6:24493. doi: 10.1038/srep24493. 

  59. Supriady H, Kamarudin MNA, Chan CK, Goh BH, Kadir HA. SMEAF attenuates the production of pro-inflammatory mediators through the inactivation of Akt-dependent NF- $\kappa$ B, p38 and ERK1/2 pathways in LPS-stimulated BV-2 microglial cells. J Funct Foods 2015;17:434-48. doi: 10.1016/j.jff.2015.05.042. 

  60. Lo JY, Kamarudin MN, Hamdi OA, Awang K, Kadir HA. Curcumenol isolated from Curcuma zedoaria suppresses Aktmediated NF- $\kappa$ B activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food Funct 2015;6:3550-9. doi: 10.1039/c5fo00607d. 

  61. Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther 2018;181:169-82. doi: 10.1016/j.pharmthera.2017.08.011. 

  62. Sun SC. The non-canonical NF- $\kappa$ B pathway in immunity and inflammation. Nat Rev Immunol 2017;17:545-58. doi: 10.1038/nri.2017.52. 

  63. Leus NG, Zwinderman MR, Dekker FJ. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF- $\kappa$ B-mediated inflammation. Curr Opin Chem Biol 2016;33:160-8. doi: 10.1016/j.cbpa.2016.06.019. 

  64. Herrington FD, Carmody RJ, Goodyear CS. Modulation of NF- $\kappa$ B signaling as a therapeutic target in autoimmunity. J Biomol Screen 2016;21:223-42. doi: 10.1177/1087057115617456. 

  65. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci 2017;127:624-33. doi: 10.1080/00207454.2016.1212854. 

  66. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2018;153:105-15. doi: 10.1016/j.ejmech.2017.09.001. 

  67. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 2003;85:180-92. doi: 10.1046/j.1471-4159.2003.01652.x. 

  68. Lapchak PA. A series of novel neuroprotective blood brain barrier penetrating flavonoid drugs to treat acute ischemic stroke. Curr Pharm Des 2012;18:3694-703. doi: 10.2174/138161212802002652. 

  69. Thilakarathna SH, Rupasinghe HP. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013;5:3367-87. doi: 10.3390/nu5093367. 

  70. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015;47:175-90. doi: 10.3109/03602532.2014.1003649. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로