$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유기농 옥수수밭에서 경운이 토양 유기물 함량 및 미생물군집에 미치는 영향
Effects of Tillage on Organic Matters and Microbial Communities in Organically Cultivated Corn Field Soils 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.39 no.1, 2020년, pp.65 - 74  

안달래 (농촌진흥청 국립농업과학원 농업미생물과) ,  안난희 (농촌진흥청 국립농업과학원 유기농업과) ,  김다혜 (농촌진흥청 국립농업과학원 농업미생물과) ,  한병학 (농촌진흥청 국립농업과학원 농업미생물과) ,  유재홍 (농촌진흥청 국립농업과학원 농업미생물과) ,  박인철 (농촌진흥청 국립농업과학원 농업미생물과) ,  안재형 (농촌진흥청 국립농업과학원 농업미생물과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Soil carbon sequestration has been investigated for a long time because of its potential to mitigate the greenhouse effect. No- or reduced tillage, crop rotations, or cover crops have been investigated and practiced to sequester carbon in soils but the roles of soil biota, particularly m...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 지구온난화에 대한 우려가 증대되면서 저탄소 농산물 생산농법으로 주목 받고 있는 무경운 농법은 토양의 물리적 특성과 탄소저장량을 향상시키며 토양 미생물 다양성과 생체량을 증대시키는 것으로 보고되었다[13, 14]. 본 연구에서는 경운 및 무경운 처리를 3년 동안 시행한 유기농 옥수수밭에서 토양유기물 및 토양미생물의 군집구조를 조사하였으며, 이를 통해 토양유기물 함량에 영향을 미치는 미생물을 구명하고 향후 토양탄소함량을 높일 수 있는 토양미생물 관리방안을 제시하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. 

  2. Ontl TA (2012) Soil carbon storage. Nature Education Knowledge, 3, 35. 

  3. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22. 

  4. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K et al. (2017) Soil carbon 4 per mille. Geoderma, 292, 59-86. 

  5. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70, 555-569. 

  6. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA et al. (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339, 1615-1618. 

  7. Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12, 46-53. 

  8. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry, 41, 1491-1496. 

  9. Averill C, Turner BL, Finzi AC (2014) Mycorrhizamediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545. 

  10. Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31, 573-585. 

  11. Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry, 34, 997-1007. 

  12. Wilson G, Rice WT, Rillig CW, Springer MC, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 12, 452-461. 

  13. Halvorson AD, Wienhold BJ, Black AL (2002) Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Science Society of America Journal, 66, 906-912. 

  14. Zuber SM, Villamil MB (2016) Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry, 97, 176-187. 

  15. RDA (2017) Analysis manual for comprehensive assay. Rural Development Administration, Jeonju, Republic of Korea. 

  16. Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107, 109-141. 

  17. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700. 

  18. Chun J, Kim K, Lee JH, Choi Y (2010) The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiology, 10, 101. 

  19. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71, 4117-4120. 

  20. Herlemann DPR, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson A F (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The Isme Journal, 5, 1571. 

  21. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis MA, Gelfand DH, Sninski JJ, White TJ (eds.), PCR-protocols a guide to methods and applications. pp. 315-322, Academic press, San Diego. 

  22. Illumina (2013) 16S metagenomic sequencing library preparation protocol: preparing 16S ribosomal RNA gene amplicons for the Illumina MiSeq system. Part no. 15044223 Rev B. Illumina, San Diego, CA. 

  23. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998. 

  24. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537-7541. 

  25. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141-D145. 

  26. Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J et al. (2013) Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271-5277. 

  27. Lee YH, Ahn BK, Lee JH (2010) Effects of rice straw application and green manuring on selected soil physical properties and microbial biomass carbon in no-till paddy field. Korean Journal of soil science and fertility, 43, 105-112. 

  28. Park HK, Kim SS, Choi WY, Lee KS, Lee JK (2002) Effect of continuous cultivation years on soil properties, weed occurrence, and rice yield in no-tillage machine transplanting and direct dry-seeding culture of rice. Korean Journal of Crop Sciences, 47, 167-173. 

  29. Kim S, Choi JS, Kang S, Park JH, Hong S, Kim TS, Yang W (2017) Effects of tillage and cultivation methods on carbon accumulation and formation of water-stable aggregates at different soil layer in rice paddy. Korean Journal of soil science and fertility, 50, 634-643. 

  30. Feng Y, Motta AC, Reeves DW, Burmester CH, Van Santen E, Osborne JA (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biology and Biochemistry, 35, 1693-1703. 

  31. Wang Y, Tu C, Cheng L, Li C, Gentry LF, Hoyt GD, Zhang X, Hu S (2011) Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil and Tillage Research, 117, 8-16. 

  32. Somasundaram J, Chaudhary RS, Awanish Kumar D, Biswas AK, Sinha NK, Mohanty M, Hati KM, Jha P, Sankar M et al. (2018) Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols. European Journal of Soil Science, 69, 879-891. 

  33. Zhang Y, Li X, Gregorich EG, McLaughlin NB, Zhang X, Guo Y, Gao Y, Liang A (2019) Evaluating storage and pool size of soil organic carbon in degraded soils: Tillage effects when crop residue is returned. Soil and Tillage Research, 192, 215-221. 

  34. Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167-177. 

  35. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytologist, 171, 41-53. 

  36. Dai J, Hu J, Zhu A, Bai J, Wang J, Lin X (2015) No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbon accumulation in soil macroaggregates. Journal of Soils and Sediments, 15, 1055-1062. 

  37. McCaig AE, Grayston SJ, Prosser JI, Glover LA (2001) Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiology Ecology, 35, 37-48. 

  38. Hydbom S, Ernfors M, Birgander J, Hollander J, Jensen ES, Olsson PA (2017) Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Applied Soil Ecology, 119, 104-114. 

  39. Mbuthia LW, Acosta-Martinez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N (2015) Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology and Biochemistry, 89, 24-34. 

  40. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry, 30, 1733-1741. 

  41. Dorr de Quadros P, Zhalnina K, Davis-Richardson A, Fagen JR, Drew J, Bayer C, Camargo FAO, Triplett EW (2012) The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. Diversity, 4, 375-395. 

  42. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364. 

  43. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43, 1450-1455. 

  44. Kampfer P (2010) Family II. Chitinophagaceae fam. nov, in: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB, Bergey's manual of systematic bacteriology. pp. 351-358, Springer, New York, USA. 

  45. Sanjeev K (2018) Molecular phylogeny and systematics of Glomeromycota: methods and limitations. Plant Archives, 18, 1091-1101. 

  46. Entry JA, Reeves DW, Mudd E, Lee WJ, Guertal E, Raper RL (1996) Influence of compaction from wheel traffic and tillage on arbuscular mycorrhizae infection and nutrient uptake by Zea mays. Plant and Soil, 180, 139-146. 

  47. Kabir Z, O'Halloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant and Soil, 192, 285-293. 

  48. Morrien E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud ML, Buee M, Dimmers W et al. (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로