최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of mushrooms = 한국버섯학회지, v.18 no.2, 2020년, pp.125 - 134
박용우 (충북대학교 산림학과) , 이화용 (충북대학교 산림학과) , 구창덕 (충북대학교 산림학과)
To study the fairy ring and genet characteristics of Suillus bovinus based on thinning intensity in Pinus densiflora forests, a simple sequence repeat (SSR) analysis was performed on the fruiting bodies of the plant. In pine wood production forests, the thinning strengths applied were 34%, 45%, and ...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
황소비단그물버섯의 특징은? | 황소비단그물버섯(Suillus bovinus)은 식용으로 알려진 외생균근성버섯으로 소나무류와 공생한다. 이 버섯은 최근에 Pinus massoniana에 균사를 접종하여 균근을 만들어 인공재배를 시도하기도 하였다(Xueguang et al. | |
외생균근성버섯의 자실체 발생에 영향을 미치는 요인은 무엇인가? | 한편, 외생균근성버섯의 자실체 발생에는 온도, 습도, 강수량 등의 기후적인 요인, 고도, 경사, 토양 등 입지적인 요인, 기주식물의 종류, 연령, 크기 등 산림 내 식생과 관련한 요인, 버섯의 종류 생활사 등이 영향을 주게 되는데(Newton and Haigh, 1998; Lee et al., 2005; Twieg et al. | |
황소비단그물버섯이 기주식물과 공생하여 균근을 만드는 2가지 방법은 무엇인가? | , 2019). 이 버섯이 기주식물과 공생하여 균근을 만드는 방법으로는 일반적인 외생균근성버섯과 같이 대표적인 두가지 과정이 있는데 하나는 새로운 포자의 발아에 의해서 이고 다른 하나는 토양 내에 기존에 있던 균사에 의해서이다(Douhan et al., 2011). |
Allen MF. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge, UK.
Arumanayagam S, Arunmani M. 2014. Rock phosphate solubilization by the ectomycorrhizal fungus Laccaria fraterna and its associated mycorrhizal helper bacterial strains. Afr J Biotechnol 13: 2524-2530.
Brundrett M. 1991. Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171-313.
Dahlberg A. 1991. Ectomycorrhiza in coniferous forest: structure and dynamics of populations and communities. Ph. D. thesis. Swedish University of Agricultural Sciences. Uppsala, Sweden.
Dahlberg A, Stenlid J. 1990. Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115: 487-493.
Dahlberg A, Stenlid J. 1994. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128: 225-234.
Deacon JW, Fleming LV. 1992. Interactions of ectomycorrhizal fungi. in: M.F. Allen. (ed.), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, USA. 249-300.
Douhan GW, Vincenot L, Gryta H, Selosse MA. 2011. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115: 569-597.
Fleming LV. 1983. Succession of mycorrhizal fungi on birch: infection of seedlings planted around mature trees. Plant Soil 71: 263-267.
Fogel R. 1980. Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol 86: 199-212.
Fox FM. 1986. Ultrastructure and infectivity of sclerotia of the ectomycorrhizal fungus Paxillus involutus on birch (Betula spp.). Trans Br Mycol Soc. 87: 627-630.
Hintikka V. 1988. On the macromycete flora in oligotrophic pine forests of different ages in South Finland. Acta Bot Fenn 136: 89-94.
Hirose D, Kikuchi J, Kanzaki N, Futai K. 2004. Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white pine plantation. New Phytol 164: 527-541.
Lawrence E. 2013. Henderson's dictionary of biology (15th edition). Benjamin Cummings, San Francisco, USA. 354.
Kensuke K, Matsushita N, Suzuki K. 2007. Development of SSR markers from an ectomycorrhizal fungus, Suillis bovinus. Mycoscience 48: 255-258.
Koo CD. 2000. Correlation between production of Tricholoma matsutake and annual ring growth of Pinus densiflora. J Korean For Soc 89: 232-240.
Lee CY. 2008. Development distribution of higher fungi as vegetation Mt. Deogyu. Woosuk University. pp.11-45. Wanju, South Korea.
Lee SH, Kim JS, Kim HE, Koo CD, Park JI, Sin CS, Shin WS. 2005. Effect of soil moisture and weather (atmospheric) conditions on the fruiting of Sarcodon aspratus in oak stand. J Korean Soc For Sci 94: 370-376.
Melanie DJ, Damiel MD, John WGC. 2002. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399-422.
Newton AC, Haigh J. 1998. Diversity of ectomycorrhizal fungi in Britain: a test of the species-area relationship, and the role of host preference. New Phytol 138: 619-627.
Ogawa M. 1985. Ecological characters of ectomycorrhizal fungi and their mycorrhizae - an introduction to the ecology of higher fungi. JARQ 18: 305-314.
Park YW, Koo CD, Choi HB, Kim JG, Lee HS, Lee HY. 2018. Effect of thinning on environmental factors and wild mushroom fruting in Quercus mongolica forest. J Korean Soc For Sci 107: 1-15.
Savoie JM, Largeteau ML. 2011. Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol 89: 971-979.
Shaw PJA, Kibby G, Mayes J. 2003. Effects of thinning treatment on an ectomycorrhizal succession under Scots pine. Mycol Res 107: 317-328.
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Academic press, London, UK. 785.
Sun X, Feng W, Li M, Shi J, Ding G. 2019. Phenology and cultivation of Suillus bovinus, an edible mycorrhizal fungus, in a Pinus massoniana plantation. Can J For Res 48: 960-968.
Twieg BD, Durall DM, Simard SW. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176: 437-447.
Van Elsas JD, Trevors JT. 1997. Modern soil microbiology. Marcel Dekker, Inc., New York, USA. 63-126.
Zhou Z, Miwa M., Hogetsu T. 2001. Polymorphism of simple sequence repeats reveals gene flow within and between ectomycorrhizal Suillus grevillei populations. New Phytol 149: 339-348.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.