$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지중환경 내 지질 매체가 질산염의 탈질 반응에 미치는 영향에 대한 고찰
The Effect of Geological Media on the Denitrification of Nitrate in Subsurface Environments 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.25 no.2 spec., 2020년, pp.16 - 27  

전지훈 (경상대학교 지질과학과 및 기초과학연구소) ,  이우춘 (경상대학교 지질과학과 및 기초과학연구소) ,  이상우 (경상대학교 지질과학과 및 기초과학연구소) ,  김순오 (경상대학교 지질과학과 및 기초과학연구소)

Abstract AI-Helper 아이콘AI-Helper

Nitrate contamination has received much attention at local as well as regional scales. The domestic situation is not out of exception, and it has been reported to be very serious, particularly within agricultural areas as a result of excessive usage of nitrogen fertilizers. Meanwhile, nitrate can be...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2007). 또한, 질산염의 탈질 반응은 무엇보다도 지질 매체 내 함유된 광물에 의하여 영향을 받는데, 지금부터는 이러한 질산염의 탈질 반응에 관여하는 지질 매체 내 주요한 광물들에 대하여 논하고자 한다.
  • 본 논문은 문헌 연구를 통해 지중환경 내 질산염의 탈질 반응에 대하여 현재까지 주로 수행되어온 생물학적 과정에 대하여 간단하게 설명하고, 생물학적 탈질 반응보다 상대적으로 덜 다루어져 온 비생물학적 과정의 중요성을 제시하고자 한다. 세부적으로는 (1) 국내외 질산염 오염현황을 조사하고, (2) 질산염의 탈질 반응에 대한 지질 매체의 영향을 살펴보며, (3) 비생물학적 탈질 반응의 중요성을 제시하고, (4) 문헌 연구 결과로부터 도출된 시사점과 향후 연구가 필요한 부분에 대하여 제안하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
지중환경 내 질산염을 감소시킬 수 있는 자연적인 과정은? 지중환경 내 질산염을 감소시킬 수 있는 자연적인 과정은 탈질 반응이다. 지중환경 내 질산염의 탈질 반응은 생물학적(biotic) 과정과 비생물학적(abiotic) 과정으로 구분할 수 있으며, 지질 매체 내 광물, 미생물, 조류 등과의상호 작용으로 인하여 조절될 수 있다(Obiri-Nyarko et al.
지하수의 질산염 오염의 원인은? , 2015). 지하수의 질산염 오염은 주로 비료의 과다한 사용(Re et al., 2017; Tong et al., 2013), 가축 분뇨, 가정 및 산업폐수, 강과 대수층의 상호 작용 등에 의하여 초래된다(Shalev et al., 2015; Tindall and Chen, 2014).
질산염의 탈질 반응은 지질 매체의 다양한 특성에 따라 달라진다. 어떤 특성에 따라 달라지는가? 질산염의 탈질 반응은 지질 매체의 다양한 특성에 따라 달라진다. 탈질 반응에 영향을 미치는 주요한 지질 매체 특성은 유기 탄소 농도, 혐기성 조건(용존산소 < 1.2 mg/L), 온도 (25-30oC), 중성의 pH에서 활발하게 일어난다(Robertson and Merkley, 2009; Xu et al., 2009).
질의응답 정보가 도움이 되었나요?

참고문헌 (86)

  1. Alefounder, P.R., Greenfield, A.J., McCarthy, J.E.G., and Ferguson, S.J., 1983, Selection and organization of denitrifying electron transfer pathways in paracoccus denitrificans, Biochim. Biophys. Acta., 724(1), 20-39. 

  2. An, S.W., Murray, C., and Park, J.W., 2010, Effect of various hydraulic conductivities for natural denitrification, Proceeding of Korean Geo-Environmental Society Fall Conference, Koean Geo-Environmental Society., Seoul, Koera, 583-587. 

  3. Archna, A., Sharma, K.S., and Sobti, R.C., 2012, Nitrate removal from ground water: a review, E-J. Chem., 9(4), 1667-1675. 

  4. Ashok, V. and Hait, S., 2015, Remediation of nitrate-contaminated water by solid-phase denitrification process-a review, Environ. Sci. Pollut. Res., 22(11), 8075-8093. 

  5. Betlach, M.R. and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42(6), 1074-1084. 

  6. Bellini, G., Sumner, M.E., Radcliffe, D.E., and Qafoku, N.P., 1996, Anion transport through columns of highly weathered acid soil: Adsorption and retardation, Soil Sci. Soc. Am. J., 60(1), 132-137. 

  7. Boisson, A., Anna, P.d., Bour, O., Borgne, T.L., Labasque, T., and Aquilina, L., 2013, Reaction chain modeling of denitrification reactions during a push-pull test, J. Contam. Hydrol., 148, 1-11. 

  8. Bond, D.L. and Fendorf, S., 2003, Kinetics and structural constraints of chromate reduction by green rusts, Environ. Sci. Technol., 37(12), 2750-2757. 

  9. Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W., and Meckenstock, R.U., 2012, Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by thiobacillus denitrificans, Environ. Sci. Technol., 46(4), 2095-2101. 

  10. Cheong, B.K., Chae, G.T., Koh, D.C., Ko, K.S., and Koo, M.H., 2008, A study of improvement for the prediction of groundwater pollution in rural area: application in keumsan, Korean J. Soil. Groundw. Environ., 13(4), 40-53. 

  11. Christiansen, B.C., Balic-Zunic, T., Dideriksen, K., and Stipp, S.L.S., 2009, Identification of green rust in groundwater, Environ. Sci. Technol., 43(10), 3436-3441. 

  12. Davidson, E.A., Chorover, J., and Dail, D.B., 2003, A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis, Glob. Change biol., 9(2), 228-236. 

  13. Devito, K.J., Fitzgerald, D., Hill, A.R., and Aravena, R., 2000, Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone, J. Environ. Qual., 29(4), 1075-1084. 

  14. Dhakal, P., Matocha, C.J., Huggins, F.E., and Vandiviere, M.M., 2013, Nitrite reactivity with magnetite, Environ. Sci. Technol., 47(12), 6206-6213. 

  15. Doane, T.A., 2017, The Abiotic Nitrogen Cycle. ACS Earth Space Chem., 1(7), 411-421. 

  16. Ernstsen, V., 1996, Reduction of nitrate by $Fe^{2+}$ in clay minerals, Clays Clay Miner., 44(5), 599-608. 

  17. Ersoy, A.F. and Gultekin, F., 2013, DRASTIC-based methodology for assessing groundwater vulnerability in the Gumushacikoy and Merzifon basin, Earth Science Research Journal, 17(1), 33-40. 

  18. Hansen, H.C.B., 1989, Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy-carbonate ("green rust"), Clay Miner., 24(4), 663-669. 

  19. Hansen, H.C.B., Guldberg, S., Erbs, M., and Koch, C.B., 2001, Kinetics of nitrate reduction by green rusts-Effects of interlayer anion and Fe(II):Fe(III) ratio, Appl. Clay Sci., 18(1-2), 81-91. 

  20. Hansen, H.C.B., Koch, C.B., Nancke-Krogh, H., Borggaard, O.K., and Srensen, J., 1996, Abiotic nitrate reduction to ammonium: Key role of green rust, Environ. Sci. Technol., 30(6), 2053-2056. 

  21. IGRAC., 2019, Global groundwater information system. Retrieved from International Groundwater Resources Assessment Centre, https://apps.geodan.nl/igrac/ggis-viewer/viewer/go/public/default ${\rightarrow}$ Groundwaterquality ${\rightarrow}$ Presenceofzoneswithhighnitrate. 

  22. Jeon, S.R., Park, S.J., Kim, H.S., Jung, S.K., Lee, Y.U., and Chung, J.I., 2011, Hydrogeochemical chracteristics and estimation of nitrate contamination sources of groundwater in the sunchang area, J. Geol. Soc. Korea, 47(2), 185-197. 

  23. Jessen, S., Postma, D., Thorling, L., Muller, S., Leskela, J., and Engesgaard, P., 2017, Decadal variations in groundwater quality: A legacy from nitrate leaching and denitrification by pyrite in a sandy aquifer, Water Resour. Res., 53(1), 184-198. 

  24. Kappler, A., Schink, B., and Newman, D.K., 2005, Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1, Geobiology, 3(4), 235-245. 

  25. Kim, H.J., Kim, N.H., Lee, J.H., and Jang, S., 2009, Characteristics of groundwater contamination caused by seawater intrusion and agricultural activity in sachen and hadong area, republic of Korea, Econ. Environ. Geol., 42(6), 575-589. 

  26. Kim, H.K., Park, S.H., Kim, M.S., Kim, H.J., Lee, M.K., Lee, G.M., Kim, S.H., Yang, J,H., and Kim, T.S., 2014, Contamination characteristics of agricultural groundwater around livestock burial areas in Korea, J. Eng. Geol., 24(2), 237-246. 

  27. Kim, H.K., Kim, K.H., Yun, S.T., Oh, J.S., Kim, H.R., Park, S.H., Kim, M.S., and Kim, T.S., 2019, Probabilistic assessment of potential leachate leakage from livestock mortality burial pits: a supervised classification approach using a gaussian mixture model (GMM) fitted to a groundwater quality monitoring dataset, Process. Saf. Environ. Prot., 129, 326-338. 

  28. Koh, E.H., Lee, E.H., and Lee, K.K., 2016, Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: Methodology for and demonstration of quantitative assessment and prediction, J. Hydrol., 541, 1133-1144. 

  29. Korom, S.F., 1992, Natural denitrification in the saturated zone: a review, Water Resour. Res., 28(6), 1657-1668. 

  30. Krause, B. and Nealson, K.H., 1997, Physiology and enzymology involved in denitrification by shewanella putrefaciens, Appl. Environ. Microbiol., 63(7), 2613-2618. 

  31. Lapworth, D.J., Krishan, G., MacDonald, A.M., and Rao, M.S., 2017, Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination, Sci. Total Environ., 599-600, 1433-1444. 

  32. Lee, I.G. and Choi, S.H., 2012, Hydro-geochemical nature and nitrates contamination characters of groundwater in the youngdong, chungbuk province, Econ. Environ. Geol., 45(1), 23-30. 

  33. Lokesh, K., 2013, A study of nitrate contamination in groundwater of delhi, India, Asian. J. Water Envion. Pollut., 10(2), 91-94. 

  34. Lu, Y., Yang, X., Wu, Z., Xu, L., Xu, Y., and Qian, G., 2016, A novel control strategy for $N_2O$ formation by adjusting Eh in nitrite/(FeII-III) carbonate green rust system, Chem. Eng. J., 304, 579-586. 

  35. Matocha, C.J., Dhakal, P., and Pyzola, S.M., 2012, The role of abiotic and coupled biotic/abiotic mineral controlled redox processes in nitrate reduction, Adv. Agronomy., 115, 181-214. 

  36. McMillan, S.G. and Schwertmann, U., 1998, Morphological and genetic relations between siderite, calcite, and goethite in a Low Moor Peat from southern Germany, Eur. J. Soil Sci., 49(2), 283-293. 

  37. Moraghan, J.T. and Buresh, R.J., 1977, Chemical reduction of nitrite and nitrous oxide by ferrous iron, Soil Sci. Soc. Am. J., 41(1), 47-50. 

  38. Noori, R., Dodangeh, M., Berndtsson, R., Hooshyaripor, F., Adamowski, J.F., Javadi, S., and Baghvand, A., 2018, A novel model for simulation of nitrate in aquifers, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-222. 

  39. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111(2), 243-259. 

  40. O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R., and Kemner, K. M., 2003a, Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide(greenrust): Formation of $UO_2$ nanoparticles, Environ. Sci. Technol., 37(4), 721-727. 

  41. O'Loughlin, E.J., Kelly, S.D., Kemner, K.M., Csencsits, R., and Cook, R.E., 2003b. Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust, Chemosphere, 53(5), 437-446. 

  42. Otero, N., Torrento, C.A., Soler, A., Mencio, A., and Mas-Pla, J., 2009, Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic, Agric. Ecosyst. Environ., 133(1-2), 103-113. 

  43. Ottley, C.J., Davison, W., and Edmunds, W.M., 1997, Chemical catalysis of nitrate reduction by iron (II), Geochim. Cosmochim. Acta, 61(9), 1819-1828. 

  44. Pabich, W.J., Valiela, I., and Hemond, H.F., 2001, Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA, Biogeochemistry, 55(3), 247-268. 

  45. Pennino, M.J., Compton, J.E., and Leibowitz, S.G., 2017, Trends in drinking water nitrate violations across the united states, Environ. Sci. Technol., 51(22), 13450-13460. 

  46. Petersen, H.J.S., 1979, Reduction of nitrate by iron(II), Acta Chem. Scand., 33, 795-796. 

  47. Potter, P., Ramankutty, N., Bennett, E.M., and Donner, S.D., 2010, Characterizing the spatial patterns of global fertilizer application and manure production, Earth Interact., 14(2), 1-22. 

  48. Rakshit, S., Matocha, C.J., and Coyne, M.S., 2008, Nitrite reduction by siderite, Soil Sci. Soc. Am. J., 72(4), 1070-1077. 

  49. Re, V., Sacchi, E., Kammoun, S., Tringali, C., Zouari, K., and Daniele, S., 2017, Intergrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The chase of Grombalia Basin(Tunisia), Sci. Total Environ., 593, 664-676. 

  50. Ren, Y., Zhou, J., Lai, B., Tang, W., and Zeng, Y., 2016, $Fe^0$ and $Fe^0$ fully covered with $Cu^0(Fe^0+Fe/Cu)$ in fixed bed reactor for nitrate removal, Rsc, Adv., 6(110), 108229-108239. 

  51. Rivett, M.O., Smith, J.W.N., Buss, S.R., and Morgan, P., 2007, Nitrate occurrence and attenuation in the major aquifers of England and Wales, Qutater. J. Eng. Geol. Hydrogeol., 40(4), 335-352. 

  52. Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W., and Bemment, C.D., 2008, Nitrate attenuation in groundwater: a review of biogeochemical controlling processes, Water Res., 42(16), 4215-4232. 

  53. Robertson, W.D., and Merkley, L.C., 2009, In-stream bioreactor for agricultural nitrate treatment, J. Environ. Qual., 38(1), 230-237. 

  54. Saheb, M., Descotes, M., Neff, D., Matthiesen, H., Michelin, A., and Dillmann, P., 2010, Iron corrosion in an anoxic soil: comparison between thermodynamic modelling and ferrous archaeological artefacts characterised along with the local in situ geochemical conditions, Appl. Geochem., 25(12), 1937-1948 

  55. Schwientek, M., Einsiedl, F., Stichler, W., Stogbauer, A., Strauss., H., and Maloszewski, P., 2008, Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system, Chem. Geol., 255(1-2), 60-67. 

  56. Seiler, K.-P., and Vomberg, I., 2005, Denitrification in a karst aquifer with matrix porosity. In: Razowska-Jaworek, L., Sadurski, A. (Eds.), Nitrates in Groundwater, International Association of Hydrogeologists, Selected Papers 5, Balkema, Leiden. 

  57. Senko, J.M., Dewers, T.A., and Krumholz, L.R., 2005, Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation, Appl. Environ. Microbiol., 71(11), 7172-7177. 

  58. Shalev, N., Burg, A., Gavrieli, I., and Lazar, B., 2015, Nitrate contamination sources in aquifers underlying cultivated fields in an arid region - the arava valley, israel, Appl. Geochem., 63, 322-332. 

  59. Shao, P., Tian, J., Yang, F., Duan, X., Gao, S., Shi, W., Luo, X., Cui, F., Luo, S., and Wang, S., 2018, Identification and regulation of active sites on nanodianonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants, Adv. Funct. Mater., 28(13), 1705295. 

  60. Sievert, S.M., Scott, K.M., Klotz, M.G., Chain, P.S., Hauser, L.J., Hemp, J., Hugler, M., Land, M., Lapidus, A., Larimer, F.W., Lucas, S., Malfatti, S.A., Meyer, F., Paulsen, I.T., Ren, Q., and Simon, J., 2008, Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans, Appl. Environ. Microbiol., 74(4), 1145-1156. 

  61. Singireddy, S., Gordon, A.D., Smirnov, A., Vance, M.A., Schoonen, M.A.A., Szilagyi, R.K., and Strongin, D.R., 2012, Reduction of nitrite and nitrate to ammonium on pyrite, Orig. Life Evol. Biosph., 42(4), 275-294. 

  62. Straub, K.L., Benz, M., Schink, B., and Widdel, F., 1996, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 62(4), 1458-1460. 

  63. Summers, D.P., Basa, R.C.B., Khare, B., and Rodoni, D., 2012, Abiotic nitrogen fixation on terrestrial planets: Reduction of NO to ammonia by FeS, Astrobiology., 12(2), 107-114. 

  64. Tagma, T., Hsissou, Y., Bouchaou, L., Bouragba, L., and Boutaleb, S., 2009, Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco), Afr. J. Environ. Sci. Technol., 3(10), 301-309. 

  65. Tai, Y.L., and Dempsey, B.A., 2009, Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism, Water Res., 43(2), 546-552. 

  66. Tecon, R., and Or, D., 2017, Biophysical processes supporting the diversity of microbial life in soil, FEMS Microbiology Reviews., 41(5), 599-623. 

  67. Tindall, J.A. and Chen, A., 2014, Variables that affect agricultural chemicals in groundwater in nebraska, Water. Air. Soil. Pollut., 225(2), 1862. 

  68. Tong, S., Zhang, B., Feng, C., Zhao, Y., Chen, N., Hao, C., Pu, J., and Zhao, L., 2013, Characteristics of heterotrophic/biofilmelectrode autotrophic denitrification of for nitrate re-moval from groundwater, Bioresour. Tchnol., 148, 121-127. 

  69. Tong, S., Rodriguez-Gonzalez, L.C., Rayne, K.A., Stocks, J.L., Feng, C., and Ergas, S.J., 2018, Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater, Environ. Eng. Sci., 35(8), 875-886. 

  70. Torrento, C., Cama, J., Urmeneta, J., Otero, N., and Soler, A., 2010, Denitrification of groundwater with pyrite and Thiobacillus denitrificans, Chem. Geol., 278(1-2), 80-91. 

  71. Torrento, C., Urmeneta, J., Otero, N., Soler, A., Vinas, M., and Cama, J., 2011, Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite, Chem. Geol., 287(1-2), 90-101. 

  72. Vaclavkova, S., Schultz-Jensen, N., Jacobsen, O.S., Elberling, B., and Aamand, J., 2015, Nitrate-controlled anaerobic oxidation of pyrite by Thiobacullus cultures, Geomicrobiol. J., 32(5), 412-419. 

  73. Van Rijin, J., Tal, Y., and Barak, Y., 1996, Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Appl. Environ. Microbiol., 62(7), 2615-2620. 

  74. Warneke, S., Schipper, L.A., Matiasek, M.G., Scow, K. M., Cameron, S., Bruesewitz, D.A., and McDonald, I.R., 2011, Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds, Water Res., 45(17), 5463-5475. 

  75. Wilcock, R.J., Nash, D., Schmidt, J., Larned, S.T., Rivers, M.R., and Feehan, P., 2011, Inputs of nutrients and fecal bacteria to freshwaters from irrigated agriculture: Case studies in Australia and New Zealand, Environ. Manag., 48(1), 198-211. 

  76. Wilderer, P.A., Jones, W.L., and Dau, U., 1987, Competition in denitrification systems affecting reduction rate and accumulation of nitrite, Water Res., 21(2), 239-245. 

  77. World Health Organization (WHO), 2016, Nitrate and nitrite in drinking water WHO/FWC/WSH/16.52, World Hearth Organization, Geneva, Switzerland., p. 33. 

  78. Wu, D., Shao, B., Fu, M., Luo, C., and Liu, Z., 2015, Denitrification of nitrite by ferrous hydroxy complex: Effects on nitrous oxide and ammonium formation, Chem. Eng. J., 279, 149-155. 

  79. Xu, D., Li, Y., Howard, A., and Guan, Y., 2013, Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland, Chemosphere, 92(2), 201-206. 

  80. Xu, J., Hao, Z., Xie, C., Lv, X., Yang, Y., and Xu, X., 2012, Promotion effect of $Fe^{2+}$ and $Fe_3O_4$ on nitrate reduction using zervalent iron, Desalination, 284, 9-13. 

  81. Xu, Z.X., Shao, L., Yin, H.L., Chu, H.Q., and Yao, Y.J., 2009, Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier, Water Environ. Res., 81(3), 242-247. 

  82. Yu, H.M. and Shin, D.B., 2018, Mineralization and genetic environments of the central and main orebodies in the manhang deposit, goesan, J. Miner. Soc. Korea, 31(2), 87-101. 

  83. Yun, S.W., Choi, H.M., and Lee, J.Y., 2014, Comparison of groundwater levles and groundwater qulities in six megacities of Korea, J. Geol. Soc. Korea, 50(4), 517-528. 

  84. Yun, S.W., Jeon, W.H., and Lee, J.Y., 2017, Evaluation of hydrochemical characteristics of groundwater and stream water in a heavy agricultural region of the haean basin, J. Geol. Soc. Korea, 53(5), 727-742. 

  85. Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., and Shen, Y., 2015, Managing nitrogen for sustainable development, Nature, 528, 51-59. 

  86. Zheng, M., 2018, Aerobic denitrification characteristics and mechanism of peudomonas stutzeri PCN-1, Nitrogen removal characteristics of aerobic denitrifying bacteria and their applications in nitrogen oxides emission mitigation, Springer. Singapore., 51-69. doi:10.1007/978-981-13-2432-1_3. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로