$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

항생제 내성을 가진 유산균의 현황과 전망
Status and Prospect of Lactic Acid Bacteria with Antibiotic Resistance 원문보기

Journal of dairy science and biotechnology, v.38 no.2, 2020년, pp.70 - 88  

천정환 (건국대학교 수의과대학 KU식품안전건강연구소 및 공중보건학) ,  서건호 (건국대학교 수의과대학 KU식품안전건강연구소 및 공중보건학) ,  배동렬 (건국대학교 수의과대학 KU식품안전건강연구소 및 공중보건학) ,  정동관 (고신대학교 식품영양학과) ,  송광영 (건국대학교 수의과대학 KU식품안전건강연구소 및 공중보건학)

초록
AI-Helper 아이콘AI-Helper

대부분의 스타터 배양균은 유산균(LAB)군(group)에 속하며 미국 식품의약국(FDA)과 유럽식품안전청(EFSA)에 의해 안전하다고 인정받고 있다. 그러나, LAB는 항생제 내성(antibiotic resistance) 유전자를 위한 내적 또는 외적 저장소로 작용할 수 있다. 하지만 저항 유전자 전달이 수직이기 때문에 이 사실은 그 자체가 안전상의 문제가 아닐 수도 있다. 그럼에도 불구하고 외부 유전적 요소는 심각한 안전 문제를 나타내는 인체 장내 미생물뿐만 아니라 병원균의 저항성 수평 전달에 유리한 변화를 유도할 수 있다. 항생제 내성을 가진 유산균의 일부 속(genus)에는 발효육 및 유제품에서 분리된 Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus 등이 포함된다. 현재 WHO는 식품산업에서 사용되는 LAB는 저항이 없어야 한다고 권고하고 있다. 다행히도 한국의 식품의약품안전처가 인정한 프로바이오틱스 균주 중 Enterococcus에 해당되는 균주는 E. faecium과 E. faecalis인데, 2019년 4월 1일부터 E. faecium과 E. faecalis의 독성인자와 항생제 내성전달인자 모두 없다고 인정된 경우에면 사용이 허가된다. 따라서 LAB의 산업적 중요성을 고려할 때 앞으로 인체와 동물장관 유래의 LAB은 체계적인 탐색 및 동정, 병원성 및 항생제 내성 유전자의 확인, 식품 및 가축사료 첨가제로의 활용, 안전성 평가연구는 계속 필요하다고 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Lactic acid bacteria (LAB) form an essential part of the intestinal microbiota of the human body and possess the ability to stabilize the intestinal microbiota, strengthen immunity, and promote digestion as well as intestinal synthesis of vitamins, amino acids, and proteins. Hence, LAB are currently...

주제어

참고문헌 (59)

  1. Alvarez-Cisneros YM, Ponce-Alquicira E. Antibiotic resistance in lactic acid bacteria. In: Kumar Y, editor. Antimicrobial resistance: a global threat. London: IntechOpen; 2018. p. 53-73. 

  2. Gad GFM, Abdel-Hamid AM, Farag ZSH. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Braz J Microbiol. 2014;45: 25-32. 

  3. Peivasteh-Roudsari L, Pirhadi M, Karami H, Tajdar-Oranj B, Molaee-Aghaee E, Sadighara P. Probiotics and food safety: an evidience-based review. J Food Safe Hyg. 2019;5:1-9. 

  4. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33:300-305. 

  5. Mermelstein NH. Combating antibiotic resistance. Food Technol. 2018;72:62-65. 

  6. Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front Microbiol. 2017; 8:908. 

  7. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. In the review on antimicrobial resistance [Internet]. 2016 [cited 2020 Apr 4]. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf 

  8. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. 2019;10:57. 

  9. Antimicrobial resistance in food and agriculture. FCC-EMPRES, information sheets [Internet]. 2017 [cited 2020 Jan 26]. Available from: http://www.fao.org/antimicrobialresistance 

  10. The FAO action plan on antimicrobial resistance 2016-2020 [Internet]. 2016 [cited 2020 Jan 19]. Available from: http://www.fao.org/3/a-i5996e.pdf 

  11. Dowling A, O'Dwyer J, Adley CC. Antibiotics: mode of action and mechanisms of resistence. In: Mendez-Vilas A, editor. Antimicrobial research: novel bioknowledge and educational programs. Badajoz, Spain: Formatex Research Center; 2017. 

  12. Giraffa G. Overview of the ecology and biodiversity of the LAB. In: Holzapfel WH, Wood BJB. Editors. Lactic acid bacteria biodiversity and taxonomy. Chichester, UK: John Wily & Sons; 2014. p. 45-54. 

  13. Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014;5:241. 

  14. Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, et al. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol. 2004;70:900-912. 

  15. Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control. 2015; 50:250-258. 

  16. Erginkaya Z, Turhan EU, Tatli D. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iran J Vet Res. 2018;19:53-56. 

  17. Florez AB, Mayo B. Antibiotic resistance-susceptibility profiles of Streptococcus thermophilus isolated from raw milk and genome analysis of the genetic basis of acquired resistances. Front Microbiol. 2017;8:2680. 

  18. Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria: a review. Int J Food Microbiol. 2005;105:281-295. 

  19. Moracanin SV, Djukic D, Zdolec N, Milijasevic M, Maskovic P. Antimicrobial resistance of lactic acid bacteria in fermented food. J Hyg Eng Des. 2017;18:25-35. 

  20. Bonham KS, Wolfe BE, Dutton RJ. Extensive horizontal gene transfer in cheeseassociated bacteria. eLife. 2017;6:e22144. 

  21. Gueimonde M, Sanchez B, de los Reyes-Gavilan CG, Margolles A. Antibiotic resistance in probiotic bacteria. Front Microbiol. 2013;4:202. 

  22. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 2013;23:1163-1169. 

  23. Mater DD, Langella P, Corthier G, Flores MJ. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol. 2008;14:123-127. 

  24. Munita JM, Arias CA, Kudva IT, Zhang Q. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4:1-24. 

  25. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int. 2014;57:176-195. 

  26. Wacher-Rodarte MC, Trejo-Munuzuri TP, Montiel-Aguirre JF, Drago-Serrano ME, Gutierrez-Lucas RL, Castaneda-Sanchez JI, et al. Antibiotic resistance and multidrugresistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Food Sci Nutr. 2016;4:423-430. 

  27. Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta. 2002;1555:1-3. 

  28. Casado Munoz MC, Benomar N, Lerma LL, Galvez A, Abriouel H. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally fermented Alorena table olives throughout fermentation process. Int J Food Microbiol. 2014;172:110-118. 

  29. Jaimee G, Halami PM. Emerging resistance to aminoglycosides in lactic acid bacteria of food origin-an impending menace. Appl Microbiol Biotechnol. 2016;100:1137-1151. 

  30. Zhang Y. Advances in the treatment of tuberculosis. Clin Pharmacol Ther. 2007; 82:595-600. 

  31. Imperial ICVJ, Ibana JA. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol. 2016;7:1983. 

  32. Zhang S, Oh JH, Alexander LM, Ozcam M, van Pijkeren JP. D-alanyl-d-alanine ligase as a broad-host-range counterselection marker in vancomycin-resistant lactic acid bacteria. J Bacteriol. 2018;200:e00607-e00617. 

  33. Von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173. 

  34. Brown-Jaque M, Calero-Caceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid. 2015;79:1-7. 

  35. European Food Safety Authority [EFSA]. Technical guidance-update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J. 2008;732:1-15. 

  36. Lee SH, Kim SK, Chung YJ, Shim MJ, Kim BK, Choi EC. Development of Enterococcus faecalis strains resistant to rifampicin and ofloxacin. J Pharm Soc Korea. 1996;40:351-356. 

  37. Alvarez-Cisneros YM, Fernandez FJ, Sainz-Espunez T, Ponce-Alquicira E. Assessment of virulence factors, antibiotic resistance and amino-decarboxylase activity in Enterococcus faecium MXVK 29 isolated from Mexican chorizo. Lett Appl Microbiol. 2017;64:171-176. 

  38. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti-infect Ther. 2014;12:1221-1236. 

  39. Abriouel H, Casado Munoz MD, Lerma LL, Perez Montoro B, Bockelman W, Pichner R, et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int. 2015;78:465-481. 

  40. Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, et al. Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J Food Sci. 2017;82:724-730. 

  41. Wang J, Guo H, Cao C, Zhao W, Kwok LY, Zhang H, et al. Characterization of the adaptive amoxicillin resistance of Lactobacillus casei Zhang by proteomic analysis. Front Microbiol. 2018;9:292. 

  42. Verraes C, Van Boxstael S, Van Meervenne E, Van Coillie E, Butaye P, Catry B, et al. Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health. 2013;10:2643-2669. 

  43. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167-176. 

  44. Martinez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala J Med Sci. 2014;119:68-77. 

  45. Mattia A, Merker R. Regulation of probiotic substances as ingredients in foods: premarket approval or "generally recognized as safe" notification. Clin Infect Dis. 2008;46:S115-S118. 

  46. Laulund S, Wind A, Derkx PMF, Zuliani V. Regulatory and safety requirements for food cultures. Microorganisms. 2017;5:28. 

  47. Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol. 2015;212:76-88. 

  48. Ministry of Food and Drug Safety. Probiotics among health functional foods: standards and specifications for health functional foods. No. 2011-68 (Nov 17, 2011) [Internet]. 2011 [cited 2020 Feb 4]. Available from: http://www.law.go.kr/ LSW//admRulLsInfoP.do?chrClsCd&admRulSeq2000000017544 

  49. Ministry of Food and Drug Safety. Probiotics among health functional foods: standards and specifications for health functional foods. No. 2018-67 (Sep 5, 2018) [Internet]. 2018 [cited 2020 Feb 5]. Available from https://mfds.go.kr/brd/m_211/view.do?seq14263&srchFr&srchTo&srchWord%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EC%95%BD%EC%A0%84&srchTp0&itm_seq_10&itm_seq_20&multi_itm_seq0&company_cd&company_nm&page1 

  50. International Organization for Standardization [ISO]. Milk and milk products: determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal lactic acid bacteria (LAB). ISO10932:2010. Geneva: ISO; 2010. 

  51. Kushiro A, Chervaux C, Cools-Portier S, Perony A, Legrain-Raspaud S, Obis D, et al. Antimicrobial susceptibility testing of lactic acid bacteria and bifidobacteria by broth microdilution method and Etest. Int J Food Microbiol. 2009;132:54-58. 

  52. Vinusha KS, Deepika K, Sudhaker Johnson T, Agrawal GK, Rakwal R. Proteomic studies on lactic acid bacteria: a review. Biochem Biophys Rep. 2018;14:140-148. 

  53. Kim DH, Jeong D, Kim H, Seo KH. Modern perspectives on the health benefits of kefir in next generation sequencing era: improvement of the host gut microbiota. Crit Rev Food Sci Nutr. 2019;59:1782-1793. 

  54. Feucherolles M, Cauchie HM, Penny C. MALDI-TOF mass spectrometry and specific biomarkers: potential new key for swift identification of antimicrobial resistance in foodborne pathogens. Microorganisms. 2019;7:593. 

  55. Wang P, Wang X, Sun Y, Gong G, Fan M, He L. Rapid identification and quantification of the antibiotic susceptibility of lactic acid bacteria using surface enhanced Raman spectroscopy. Anal Methods. 2020;12:376-382. 

  56. Quinto EJ, Jimenez P, Caro I, Tejero J, Mateo J, Girbees T. Probiotic lactic acid bacteria: a review. Food Nutr Sci. 2014;5:1765-1775. 

  57. Moon BY, Lee SK, Park JH. Antibiotic resistant characteristics of Bifidobacterium from Korean intestine origin and commercial yoghurts. Korean J Food Sci Technol. 2006;38:313-316. 

  58. Wang K, Zhang H, Feng J, Ma L, de la Fuente-Nunez C, Wang S, et al. Antibiotic resistance of lactic acid bacteria isolated from dairy product in Tianjin, China. J Agric Food Res. 2019;1:100006. 

  59. Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front Vet Sci. 2020;7:49. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로