$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

어병 세균에 대한 소나무과 잎 정유의 항세균 효과
Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens 원문보기

목재공학 = Journal of the Korean wood science and technology, v.48 no.4, 2020년, pp.527 - 547  

HAM, Youngseok (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ,  YANG, Jiyoon (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ,  CHOI, Won-Sil (National Instrumentation Center for Environmental Management, Seoul National University) ,  AHN, Byoung-Jun (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ,  PARK, Mi-Jin (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)

초록
AI-Helper 아이콘AI-Helper

어병 세균은 어류 양식업의 경제적 피해 뿐만 아니라, 인수공통감염원으로 알려진 전염성 병원균이다. 어병 세균을 제어하기 위해 지속적인 항생제의 사용은 부작용이 수반되기 때문에, 천연 유래 소재의 개발이 요구된다. 본 연구에서는 항생제대체제 개발을 위해 항세균효과가 우수한 침엽수 정유를 발굴하고자 하였다. 소나무과에 속하는 전나무 (Abies holophylla), 곰솔 (Pinus thunbergii), 섬잣나무 (Pinus parviflora), 솔송 (Tsuga sieboldii), 리기테다소나무 (Pinus rigitaeda)의 잎에서 hydro-distillation법을 이용하여 정유를 추출하였으며, 추출된 정유는 어병 세균인 Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, Lactococcus garivieae에 대하여 항균력을 평가하였다. 그 결과, 전나무와 곰솔 잎 정유가 그람 음성 세균인 E. tarda와 P. damselae에 대하여 선택적으로 강한 항균력을 나타냈다. GC-MS 분석 결과, 전나무 잎 정유의 주요 성분은 (-)-bornyl acetate (29.45%), D-limonene (20.47%), camphene (11.73%)이고, 곰솔 잎 정유의 주요 성분은 α-pinene (59.81%)으로 각각 확인되었다. 또한, 미량으로 존재하지만 정유와 동일한 효능을 나타내는 유효 성분으로 oxygenated monoterpenes인 neryl acetate, (-)-borneol, (-)-carveol의 세가지 화합물을 구명하였다. 따라서 그람 음성어병세균의 생장억제효과가 우수한 전나무와 곰솔 잎 정유는 사료 첨가제, 수산용 의약품 등 생물학적 제제로 활용 될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Fish pathogens cause not only economic damages to fish farming but also infectious pathogens known as a zoonotic agent. Since the continued use of antibiotics to control fish pathogens entails side effects, materials of natural origin need to be developed. The purpose of this study is to discover co...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 05, and cultured at 28 ˚C for 24 hours. After incubation for 24 hours, the absorbance was measured at 600 nm using an Epoch microplate spectrophotometer (BioTek Instruments, Inc., US) to evaluate the antibacterial activity of essential oils. The control group was treated with 1% DMSO in which the sample was dissolved, and the positive control group was tetracycline (HPLC grade, Product number: 87128, Sigma-Aldrich, Korea), an antibiotic.
  • For that reason, in this study, we evaluate anti-bacterial activity of essential oils from Pinaceae leaves, which are A. holophylla, P. thunbergii, P. parviflora, T. sieboldii, and P. rigitaeda, against fish pathogens and investigate their own active ingredients. Through this, we tried to investigate whether essential oils from Pinaceae leaves can be used as a prevention of fish pathogens or as a medicine for fisheries.
  • In this study, we evaluated the activity of the terpene-based single compound constituting the essential oil, and sought to identify an active ingredient exhibiting similar physiological activity to the essential oils. We carried out antibacterial screening of various terpene-based single compounds (0.
  • 72%, and the antibacterial effect was evaluated with the paper disc diffusion method. The presence of antibacterial activity of essential oils was confirmed by measuring the size of the ring formed by exposing 4 types of fish pathogens to a paper disc containing essential oils for 2 days (Table 1). A clear zone arising around the paper disc is formed because bacteria cannot grow in the area, so the size of the growth inhibiting ring indicates an index of antibacterial activity (Djabou et al.
  • The purpose of this study was to evaluate the possibility of substituting essential oil, a natural product, for antibiotics used to treat infectious fish diseases caused by bacteria to compensate for side effects such as the emergence of resistant strains, which have been pointed out as a disadvantage of using antibiotics. We evaluated antibacterial activity of the five essential oils extracted from the leaves of pine family, and noticed that A.

대상 데이터

  • Edwardsiella tarda FP5060, Photobacterium damselae FP4101, Lactococcus garvieae FP5245, and Streptococcus parauberis FP3287 were received from Marine and Fisheries Life Resources, National Institute of Fisheries Sciences, and they were stored in 25% glycerol stock at -40˚C. BHI agar was prepared by adding 15 g/L agar to BHI broth (BactoTM brain heart infusion, Product number: 237500, BD Biosciences Korea Ltd.

데이터처리

  • , Chicago, Illinois, USA). Significance levels were set at 95% confidence intervals for Tukey test or paired-t-test.
  • Standard deviation was calculated from four independent experiments. Statistical analysis was performed using a Tukey test. Values that differ from the control with the 95% confidence level are marked with a star (A.
  • Standard deviation was calculated from four independent experiments. Statistical analysis was performed using a paired-t-test. Values that differ from the control with the 95% confidence level are marked with a star on the top of bars.
본문요약 정보가 도움이 되었나요?

참고문헌 (75)

  1. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A., Anwar, F. 2015. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine 5(8): 601-611. 

  2. Ahn, C., Park, M.J., Kim, J.W., Yang, J., Lee, S.S., Jeung, E.B. 2018. Cytotoxic evaluation of plant essential oils in human skin and lung cells. Journal of the Korean Wood Science and Technology 46(2): 166-177. 

  3. Amorati, R., Foti, M.C., Valgimigli, L. 2013. Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry 61(46): 10835- 10847. 

  4. Aumeeruddy Elalfi, Z., Gurib-Fakim, A., Mahomoodally, F. 2015. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of mauritius. Industrial Crops and Products 71: 197-204. 

  5. Ayvaz, A., Sagdic, O., Karaborklu, S., Ozturk, I. 2010. Insecticidal activity of the essential oils from different plants against three stored-product insects. Journal of Insect Science 10(1): 21-32. 

  6. Aziz, Z.A.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M.A., Ashraf, G.M. 2018. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - a review. Current Drug Metabolism 19(13): 1100-1110. 

  7. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils: A review. Food and Chemical Toxicology 46(2): 446-475. 

  8. Bock, A., Sawers, G. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edition. Fermentation, pp. 262-282. 

  9. Bouazama, S., Hicham, H., Costa, J., Desjobert, J.M., Talbaoui, A., Tabyaoui, M. 2017. Chemical composition and antibacterial activity of the essential oils of Lavandula pedunculata and Lavandula dentata. Journal of Materials and Environmental Sciences 8: 2154-2160. 

  10. Bouyahya, A., Bakri, Y., Et-Touys, A., Talbaoui, A., Khouchlaa, A., Charfi, S., Abrini, J., Dakka, N. 2017. Resistance to antibiotics and mechanisms of action of essential oils against bacteria. Phytotherapie. DOI 10.1007/s10298-017-1118-z. 

  11. Bulfon, C., Volpatti, D., Galeotti, M. 2013. Current research on the use of plant-derived products in farmed fish. Aquaculture Research 46(3): 513-551. 

  12. Cabello, F. 2006. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology 8(7): 1137-1144. 

  13. Cha, J.D. 2007. Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. Journal of Bacteriology and Virology 37(3): 129-136. 

  14. Cho, M.Y., Kim, M.S., Kwon, M.G., Jee, B .Y., Choi, H.S., Choi, D.L., Park, G.H., Lee, C.H., Kim, J.D., Lee, J.S., Oh, Y.K., Lee, D.C., Park, S.H., Park, M.A. 2007. Epidemiological study of bacterial diseases of cultured olive flounder, Paralichthys olivaceus from 2005 to 2006 in korea. Journal of Aquaculture 20(1): 61-70. 

  15. Choksi, T.T., Dadani, F. 2017. Reviewing the emergence of Lactococcus garvieae: A case of catheter associated urinary tract infection caused by Lactococcus garvieae and Escherichia coli coinfection. Case Reports in Infectious Diseases 2017: 1-4. 

  16. Chouhan, S., Sharma, K., Guleria, S. 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 4(3): 58-79. 

  17. Cunha, J., Heinzmann, B., Baldisserotto, B. 2018. The effects of essential oils and their major compounds on fish bacterial pathogens-a review. Journal of Applied Microbiology 125(2): 328-344. 

  18. D’agostino, M., Tesse, N., Frippiat, J.P., Machouart, M., Debourgogne, A. 2019. Essential oils and their natural active compounds presenting antifungal properties. Molecules 24(20): 3713-3734. 

  19. Diao, W.R., Zhang, L.L., Feng, S.S., Xu, J.G. 2014. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. Journal of Food Protection 77(10): 1740-1746. 

  20. Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M.C., Desjobert, J.M., Bolla, J.M., Costa, J., Berti, L., Luciani, A., Muselli, A. 2013. Phytochemical composition of Corsican teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 30(1): 354-363. 

  21. Erfanmanesh, A., Soltani, M., Pirali, E., Mohammadian, S., Taherimirghaed, A. 2012. Genetic characterization of Streptococcus iniae in diseased farmed rainbow trout (Onchorhynchus mykiss) in iran. The Scientific World Journal 7: 1-6. 

  22. Grenni, P., Ancona V., Barra Caracciolo, A. 2017. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136: 25-39. 

  23. Guimaraes, A.C., Meireles, L.M., Lemos, M.F., Guimaraes, M.C.C., Endringer, D.C., Fronza, M., Scherer, R. 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471-2483. 

  24. Ham, Y., Kim, T.J. 2019. Conditions for preparing Glycyrrhiza uralensis extract for inhibiting biofilm formation of Streptococcus mutans. Journal of the Korean Wood Science and Technology 47(2): 178-188. 

  25. Hammerschmidt, F., Clark, A., Soliman, F., el-Kashoury, E.S.A., el-Kawy, M., el-Fishawy, A. 1993. Chemical composition and antimicrobial activity of essential oils of jasonia candicans and J. Montana. Planta medica 59(1): 68-70. 

  26. Han, H.J., Kim, D.H., Lee, D.C., Kim, S.M., Park, S.I. 2006. Pathogenicity of edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases 29(10): 601-609. 

  27. Hirai, Y., Asahata-Tago, S., Ainoda, Y., Fujita, T., Kikuchi, K. 2015. Edwardsiella tarda bacteremia. A rare but fatal water- and foodborne infection: Review of the literature and clinical cases from a single centre. The Canadian Journal of Infectious Diseases and Medical Microbiology 26(6): 313-318. 

  28. Hong, E.J., Na, K.J., Choi, I.G., Choi, K.C., Jeung, E.B. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biological and Pharmaceutical Bulletin 27(6): 863-866. 

  29. Hundenborn, J., Thurig, S., Kommerell, M., Haag, H., Nolte, O. 2013. Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Reports in Medicine 2013(5): 610-632. 

  30. Hussain, A., Anwar, F., Shahid, M., Basra, S., Przybylski, R. 2010. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. The Journal of Essential Oil Research 22(1): 78-84. 

  31. Hyldgaard, M., Mygind, T., Meyer, R.L. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3(12): 1-24. 

  32. Jee, B.Y., Shin, K.W., Lee, D.W., Kim, Y.J., Lee, M.K. 2014. Monitoring of the mortalities and medications in the inland farms of olive flounder, Paralichthys olivaceus, in south korea. Journal of Fish Pathology 27(1): 77-84. 

  33. Jeong, M.J., Yang, J., Choi, W.S., Kim, J.W., Kim, S.J., Park, M.J. 2017. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. Journal of the Korean Wood Science and Technology 45(1): 96-106. 

  34. Jung, E.K. 2009. Chemical composition and antimicrobial activity of the essential oil of Chrysanthemum indicum against oral bacteria. Journal of Bacteriology and Virology 39(2): 61-69. 

  35. Kim, H.S., Lee, B.S., Yun, K.W. 2013. Comparison of chemical composition and antimicrobial activity of essential oils from three pinus species. Industrial Crops and Products 44: 323-329. 

  36. Kim, S.H., Lee, S.Y., Cho, S.M., Hong, C.Y., Park, M.J., Choi, I.G. 2016. Evaluation on anti-fungal activity and synergy effects of essential oil and their constituents from Abies holophylla. Journal of the Korean Wood Science and Technology 44(1): 113-123. 

  37. Kim, S.M., Jun, L.J., Park, M.A., Jung, S.H., Jeong, H.D., Jeong, J.B. 2015. Monitoring of emaciation disease in cultured olive flounder Paralichthys olivaceus in Jeju (2010-2013), korea. Korean Journal of Fisheries and Aquatic Sciences 48(5): 719-724. 

  38. Knobloch, K., Pauli, A., Iberl, B., Weigand, H., Weis, N. 1989. Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research 1(3): 119-128. 

  39. Kotan, R., Kordali, S., Cakir, A. 2007. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift fur Naturforschung. C, Journal of Biosciences 62(7-8): 507-513. 

  40. Koukos, P.K., Papadopoulou, K.I., Patiaka, D.T., Papagiannopoulos, A.D. 2000. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce Grisebach) grown in Northern Greece. Journal of Agricultural and Food Chemistry 48(4): 1266-1268. 

  41. Lambert, R.J., Skandamis, P.N., Coote, P.J., Nychas, G.J. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453-462. 

  42. Lee, J.H., Hong, S.K. 2009. Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology 19(4): 372-377. 

  43. Lee, S.Y., Kim, S.H., Park, M.J., Lee, S.S., Choi, I.G. 2014. Antibacterial activity of essential oil from Abies holophylla against respiratory tract bacteria. Journal of the Korean Wood Science and Technology 42(5): 533-542. 

  44. Li, W.R., Shi, Q.S., Liang, Q., Xie, X.B., Huang, X.M., Chen, Y.B. 2014. Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLoS ONE 9(11): e110983. 

  45. Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L., Luo, S.L. 2019. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 24(8): 1577-1587. 

  46. Lingan, K. 2018. A review on major constituents of various essential oils and its application. Translational Medicine 8(1). DOI: 10.4172/2161-1025.1000201. 

  47. Lopez-Romero, J.C., Gonzalez-Rios, H., Borges, A., Simoes, M. 2015. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-based Complementary and Alternative Medicine : eCAM 2015: 1-9. 

  48. Mann, C.M., Cox, S.D., Markham, J.L. 2000. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Letters in Applied Microbiology 30(4): 294-297. 

  49. Markestad, A., Grave, K. 1997. Reduction of antibacterial drug use in norwegian fish farming due to vaccination. Developments in Biological Standardization 90: 365-369. 

  50. Martucci, J.F., Gende, L., Neira, L., Ruseckaite, R. 2015. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205-213. 

  51. Min, H.J., Kim, C.S., Hyun, H.J., Bae, Y.S. 2017. Essential oil analysis of Illicium anistum L. extracts. Journal of the Korean Wood Science and Technology 45(6): 682-688. 

  52. Mohammed, H., Hamamouchi, J., Zouhdi, M., Bessiere, J.M. 2001. Chemical and antimicrobial properties of essential oils of five moroccan pinaceae. Journal of Essential Oil Research 13(4): 298-302. 

  53. Moon, J.S., Kim, J.Y., Joh, S.J., Kim, M.J., Son, S.W., Jang, H. 2009. Influence on efficacy of ${\beta}$ -hemolytic Streptococcus iniae vaccine by mixed infections with Edwardsiella tarda and Neoheterobothrium hirame in cultured olive flounder, Paralichthys olivaceus. Journal of Veterinary Clinics 26(3): 226-230. 

  54. Nazzaro, F., Fratianni, F., Coppola, R., Feo, V. 2017. Essential oils and antifungal activity. Pharmaceuticals (Basel) 10(4): 86-106. 

  55. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6(12): 1451-1474. 

  56. Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Park, Y.K., Dalvi, R., Kang, B.J., Joh, S.J., Jung, T.S. 2009. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiology Letters 293(1): 20-27. 

  57. Nikaido, H. 1994. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 264(5157): 382-388. 

  58. Oh, M.J., Jung, S.J., Kitamura, S.I., Kim, H.Y., Kang, S.Y. 2006. Viral diseases of olive flounder in korean hatcheries. Journal of Ocean University of China 5(1): 45-48. 

  59. Park, J.W., Wendt, M., Heo, G.J. 2016. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research 32(2): 87-90. 

  60. Plesiat, P., Nikaido, H. 1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Molecular Microbiology 6(10): 1323-1333. 

  61. Raeisi, M., Tajik, H., Yarahmadi, A., Sanginabadi, S. 2015. Antimicrobial effect of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Health Scope 4(4): e21808. 

  62. Rhodes, G., Huys, G., Swings, J., Mc Gann, P., Hiney, M., Smith, P., Pickup, R. 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of tn1721 in dissemination of the tetracycline resistance determinant tet A. Applied and Environmental Microbiology 66(9): 3883-3890. 

  63. Rossiter, S., Fletcher, M., Wuest, W. 2017. Natural products as platforms to overcome antibiotic resistance. Chemical Reviews 117(19): 12415-12474. 

  64. Salgado-Garciglia, R., Lopez-Meza, J., Torres-Martinez, R., Ochoa-Zarzosa, A., Saavedra-Molina, A., Garcia-Rodriguez, Y., Rios-Chavez, P. 2018. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (moc. And sesse ex benth.) briq. Pharmacognosy Magazine 13(4): 875-880. 

  65. Sutili, F., Murari, A.L., Silva, L.L., Gressler, L., Heinzmann, B., Vargas, A., Schmidt, D., Baldisserotto, B. 2016. The use of Ocimum americanum essential oil against the pathogens Aeromonas hydrophila and Gyrodactylus sp. in silver catfish (Rhamdia quelen). Letters in Applied Microbiology 63(2): 82-88. 

  66. Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, K.H. 2001. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. Journal of Agricultural and Food Chemistry 49(9): 4300-4303. 

  67. Tiwari, B.K., Valdramidis, V.P., O'Donnell, C.P., Muthukumarappan, K., Bourke, P., Cullen, P.J. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57(14): 5987-6000. 

  68. Tongnuanchan, P., Benjakul, S. 2014. Essential oils: Extraction, bioactivities, and their uses for food preservation. Journal of Food Science 79(7): 1231-1249. 

  69. Tripathi, A., Upadhyay, S., Bhuyan, M., Bhattacharya, P. 2009. A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy 1(5): 052-063. 

  70. Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49(6): 2474-2478. 

  71. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Reviews 56(3): 395-411. 

  72. Xie, Q., Liu, Z., Li, Z. 2015. Chemical composition and antioxidant activity of essential oil of six pinus taxa native to china. Molecules 20(5): 9380-9392. 

  73. Yan, L., Kim, I.H. 2013. Effects of dietary supplementation of fermented garlic powder on growth performance, apparent total tract digestibility, blood characteristics and faecal microbial concentration in weanling pigs. Journal of Animal Physiology and Animal Nutrition 97(3): 457-464. 

  74. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species Journal of the Korean Wood Science and Technology 47(6): 674-691. 

  75. Yang, X.N., Khan, I., Kang, S.C. 2015. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pacific Journal of Tropical Medicine 8(9): 694-700. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로