$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층
Inorganic charge transport materials for high reliable perovskite solar cells 원문보기

세라미스트 = Ceramist, v.23 no.2, 2020년, pp.145 - 165  

박소정 (서울대학교 재료공학부) ,  지수근 (서울대학교 재료공학부) ,  김진영 (서울대학교 재료공학부)

Abstract AI-Helper 아이콘AI-Helper

Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
할라이드페로브스카이트의 구조는 무엇인가 2 % 의 공인 인증 광전변환 효율(PCE)을 기록하고 있다1). 할라이드페로브스카이트는 ABX3의 화학식을 가지며, BX6 팔면체가 A로 이루어진 육면체의 꼭짓점을 공유하는 3차원 결정구조를 이루고 있다. 일반적으로 A-site는 메틸암모늄(Methylammonium+), 포름아마디늄(Formamidinium+), Cs(Cesium+)과 같은 유기 및 무기 양이온으로 이루어져 있으며, 단일 조성 또는 위의 양이온 들을 적절한 비율로 혼합하여 사용한다.
할라이드 페로브스카이트(perovskite)의 특성은 무엇인가 할라이드 페로브스카이트(perovskite)는 높은 광흡수 계수(absorption coefficient), 낮은 엑시톤(exciton) 결합 에너지, 긴 전하확산거리(diffusion length)와 같은 우수한 광전기적 특성을 가진다. 이처럼 우수한 물질 특성을 기반으로 페로브스카이트 태양전지에 대한 연구가 활발히 이루어지고 있고, 현재 페로브스카이트 단일 광흡수층 태양전지는 25.
페로브스카이트의 A-site는 어떻게 이루어져 있는가 할라이드페로브스카이트는 ABX3의 화학식을 가지며, BX6 팔면체가 A로 이루어진 육면체의 꼭짓점을 공유하는 3차원 결정구조를 이루고 있다. 일반적으로 A-site는 메틸암모늄(Methylammonium+), 포름아마디늄(Formamidinium+), Cs(Cesium+)과 같은 유기 및 무기 양이온으로 이루어져 있으며, 단일 조성 또는 위의 양이온 들을 적절한 비율로 혼합하여 사용한다. 그리고 B-site는 금속 양이온 자리로 납(Pb2+), 주석(Sn2+) 이사용 되고, X-site는 아이오딘(I-), 브로민(Br-), 염소(Cl-)와 같은 할로겐 음이온이 위치하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (106)

  1. NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: April 2020). 

  2. Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science, 358, 739-744, doi:10.1126/science.aam6323 (2017). 

  3. Park, I. J. et al. New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p-i-n Geometry. J. Phys. Chem. C, 119, 27285-27290, doi:10.1021/acs.jpcc.5b09322 (2015). 

  4. Xie, F. et al. Vertical recrystallization for highly efficient and stable formamidiniumbased inverted-structure perovskite solar cells. Energy Environ. Sci., 10, 1942-1949, doi:10.1039/C7EE01675A (2017). 

  5. Wu, Y. et al. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm(2) achieved by Additive Engineering. Adv. Mater,. (Deerfield Beach, Fla.) 29, doi:10.1002/adma.201701073 (2017). 

  6. Chen, W. et al. Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 350, 944, doi:10.1126/science.aad1015 (2015). 

  7. Park, I. J. et al. Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem, 10, 2660-2667, doi:10.1002/cssc.201700612 (2017). 

  8. Yan, X. et al. Optimization of sputtering NiOx films for perovskite solar cell applications. Mater. Res. Bull., 103, 150-157, doi:10.1016/j.materresbull.2018.03.027 (2018). 

  9. Pae, S. R. et al. Improving Uniformity and Reproducibility of Hybrid Perovskite Solar Cells via a Low-Temperature Vacuum Deposition Process for NiOx Hole Transport Layers. ACS Appl. Mater. Interfaces, 10, 534-540, doi:10.1021/acsami.7b14499 (2018). 

  10. Abzieher, T. et al. Electron-Beam-Evaporated Nickel Oxide Hole Transport Layers for Perovskite-Based Photovoltaics. Adv. Energy Mater., 9, 1802995, doi:10.1002/aenm.201802995 (2019). 

  11. Seo, S. et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale 8, 11403-11412, doi:10.1039/C6NR01601D (2016). 

  12. Seo, S., Jeong, S., Bae, C., Park, N.-G. & Shin, H. Perovskite Solar Cells with Inorganic Electron- and Hole-Transport Layers Exhibiting Long-Term ( ${\approx}500h$ ) Stability at $85^{\circ}C$ under Continuous 1 Sun Illumination in Ambient Air. Adv. Mater., 30, 1801010, doi:10.1002/adma.201801010 (2018). 

  13. Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. & Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci., 8, 1602-1608, doi:10.1039/C5EE00120J (2015). 

  14. Jorgensen, M., Norrman, K. & Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells, 92, 686-714, doi:https://doi.org/10.1016/j.solmat.2008.01.005 (2008). 

  15. Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solutionprocessed copper-doped nickel oxide holetransporting layer. Adv. Mater., 27, 695-701, doi:10.1002/adma.201404189 (2015). 

  16. Jung, J. W., Chueh, C. C. & Jen, A. K. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater., 27, 7874-7880, doi:10.1002/adma.201503298 (2015). 

  17. Xie, Y. et al. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer. ACS Appl. Mater. Interfaces, 10, 14153-14159, doi: 10.1021/acsami.8b01683 (2018). 

  18. Chen, W. et al. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater., 7, 1700722, doi:10.1002/aenm.201700722 (2017). 

  19. Wei, Y. et al. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Appl. Surf. Sci., 427, 782-790, doi:https://doi.org/10.1016/j.apsusc.2017.08.184 (2018). 

  20. Li, G. et al. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci., (Weinh) 4, 1700463, doi:10.1002/advs.201700463 (2017). 

  21. Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350, 944-948, doi:10.1126/science.aad1015 (2015). 

  22. Qiu, Z. et al. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C, 5, 7084-7094, doi:10.1039/C7TC01224A (2017). 

  23. Cao, J. et al. Low-temperature solutionprocessed NiOx films for air-stable perovskite solar cells. J. Mater. Chem. A, 5, 11071-11077, doi:10.1039/C7TA02228J (2017). 

  24. Liu, Z. et al. Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A, 5, 6597-6605, doi:10.1039/C7TA01593C (2017). 

  25. Li, R. et al. NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Lett., 5, 79-86, doi:10.1021/acsenergylett.9b02112 (2020). 

  26. Park, I. J. et al. Highly Efficient and Uniform 1 cm(2) Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem, 10, 2660-2667, doi:10.1002/cssc.201700612 (2017). 

  27. He, J. et al. Ligand-Free, Highly Dispersed NiOx Nanocrystal for Efficient, Stable, Low-Temperature Processable Perovskite Solar Cells. Sol. RRL, 2, 1800004, doi:10.1002/solr.201800004 (2018). 

  28. Tirado, J. et al. Air-Stable n-i-p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material. ACS Appl. Energy Mater., 2, 4890-4899, doi:10.1021/acsaem.9b00603 (2019). 

  29. Jaffe, J. E. et al. Electronic and Defect Structures of CuSCN. J. Phys. Chem. C, 114, 9111-9117, doi:10.1021/jp101586q (2010). 

  30. Qin, P. et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun., 5, 3834, doi:10.1038/ncomms4834 (2014). 

  31. Ye, S. et al. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett., 15, 3723-3728, doi:10.1021/acs.nanolett.5b00116 (2015). 

  32. Wijeyasinghe, N. et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater., 27, 1701818, doi:10.1002/adfm.201701818 (2017). 

  33. Liu, J. et al. Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole-Transporter. Adv. Mater. Interfaces, 3, 1600571, doi:10.1002/admi.201600571 (2016). 

  34. Jung, M. et al. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. ChemSusChem, 9, 2592-2596, doi:10.1002/cssc.201600957 (2016). 

  35. Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768, doi:10.1126/science.aam5655 (2017). 

  36. Zuo, C. & Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 11, 5528-5532, doi:10.1002/smll.201501330 (2015). 

  37. Li, B. S., Akimoto, K. & Shen, A. Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer. J. Cryst. Growth, 311, 1102-1105, doi:https://doi.org/10.1016/j.jcrysgro.2008.11.038 (2009). 

  38. Rao, H. et al. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51-57, doi:https://doi.org/10.1016/j.nanoen.2016.06.044 (2016). 

  39. Sun, W. et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale, 8, 10806-10813, doi:10.1039/C6NR01927G (2016). 

  40. Wong, K. S. T., Zhuk, S., Masudy-Panah, S. & Dalapati, K. G. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells. Materials, 9, doi:10.3390/ma9040271 (2016). 

  41. Guo, Y., Lei, H., Xiong, L., Li, B. & Fang, G. An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells. J. Mater. Chem. A, 6, 2157-2165, doi:10.1039/C7TA09946K (2018). 

  42. Nejand, B. A., Ahmadi, V., Gharibzadeh, S. & Shahverdi, H. R. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 9, 302-313, doi:10.1002/cssc.201501273 (2016). 

  43. Han, G. et al. Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells. Scr. Mater., 153, 104-108, doi:https://doi.org/10.1016/j.scriptamat.2018.04.049 (2018). 

  44. Akin, S. et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J. Mater. Chem. A, 6, 20327-20337, doi:10.1039/C8TA07368F (2018). 

  45. Qin, P.-L. et al. High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials. Sol. RRL, 1, 1700058, doi:10.1002/solr.201700058 (2017). 

  46. Chen, Y. et al. Thermal lystable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 61, doi:10.1016/j.nanoen.2019.04.042 (2019). 

  47. Zhang, H. et al. Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Adv. Energy Mater., 8, 1702762, doi:10.1002/aenm.201702762 (2018). 

  48. Yang, B. et al. Multifunctional Synthesis Approach of In:CuCrO2 Nanoparticles for Hole Transport Layer in High-Performance Perovskite Solar Cells. Adv. Funct. Mater., 29, 1902600, doi:10.1002/adfm.201902600 (2019). 

  49. Chen, Y. et al. Thermallystable methylammonium-free inverted perovskite solar cells with $Zn^{2+}$ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 61, 148-157, doi:https://doi.org/10.1016/j.nanoen.2019.04.042 (2019). 

  50. Zhang, H., Wang, H., Chen, W. & Jen, A. K. Y. CuGaO2: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater., 29, 1604984, doi:10.1002/adma.201604984 (2017). 

  51. Tseng, Z. L. et al. Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy, 139, 484-488, doi:10.1016/j.solener.2016.10.005 (2016). 

  52. Yang, Y. et al. Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 48, 10-19, doi: https://doi.org/10.1016/j.nanoen.2018.03.046 (2018). 

  53. Sanehira, E. M. et al. Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection. ACS Energy Lett., 1, 38-45, doi:10.1021/acsenergylett.6b00013 (2016). 

  54. Lee, K.-M. et al. Highly efficient and stable semi-transparent perovskite solar modules with a trilayer anode electrode. Nanoscale, 10, 17699-17704, doi:10.1039/C8NR06095A (2018). 

  55. Sun, H. et al. Low-temperature solutionprocessed p-type vanadium oxide for perovskite solar cells. Chem. Commun., 52, 8099-8102, doi:10.1039/C6CC03740B (2016). 

  56. Guo, Q. et al. Low-temperature solutionprocessed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Phys. Chem. Chem. Phys., 20, 21746-21754, doi:10.1039/c8cp03223h (2018). 

  57. Chu, S. et al. Atomic-layer-deposited ultrathin VOx film as a hole transport layer for perovskite solar cells. Semicond. Sci. Technol., 33, 115016, doi:10.1088/1361-6641/aae071 (2018). 

  58. Raiford, J. A. et al. Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n-i-p perovskite solar cells for tandems. Sustainable Energy Fuels, 3, 1517-1525, doi:10.1039/C9SE00081J (2019). 

  59. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234, doi:10.1126/science.aaa9272 (2015). 

  60. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515, doi:10.1038/s41586-019-1036-3 (2019). 

  61. Jeon, N. J. et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 3, 682-689, doi:10.1038/s41560-018-0200-6 (2018). 

  62. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354, 206, doi:10.1126/science.aah5557 (2016). 

  63. Tan, H. et al. Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation. Science 355, 722, doi:10.1126/science.aai9081 (2017). 

  64. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized $TiO_2$ with mesosuperstructured organometal tri-halide perovskite solar cells. Nat. Commun., 4, 2885, doi:10.1038/ncomms3885 (2013). 

  65. Pathak, S. K. et al. Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2. Adv. Funct. Mater. 24, 6046-6055, doi:10.1002/adfm.201401658 (2014). 

  66. Roose, B. et al. Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO2. Adv. Funct. Mater., 6, 1501868, doi:10.1002/aenm.201501868 (2016). 

  67. Chen, T.-P. et al. Self-Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Adv. Energy Mater., 8, 1701722, doi:10.1002/aenm.201701722 (2018). 

  68. Zhang, Y. et al. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 56, 733-740, doi:https://doi.org/10.1016/j.nanoen.2018.11.068 (2019). 

  69. Hu, W. et al. Low-Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. Adv. Mater., 31, 1806095, doi:10.1002/adma.201806095 (2019). 

  70. Chen, H. et al. Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High-Performance Methylammonium Lead Iodide Perovskite Solar Cells. Adv. Mater., 32, 1905661, doi:10.1002/adma.201905661 (2020). 

  71. Zhu, L. F. et al. Efficient perovskite solar cells via simple interfacial modification toward a mesoporous TiO2 electron transportation layer. RSC Adv., 6, 82282-82288, doi:10.1039/C6RA16839F (2016). 

  72. Fan, L. et al. Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 27, 561-568, doi:https://doi.org/10.1016/j.nanoen.2016.08.001 (2016). 

  73. You, S. et al. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Adv. Mater., 30, e1706924, doi:10.1002/adma.201706924 (2018). 

  74. Li, Y. et al. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. J. Am. Chem. Soc., 137, 15540-15547, doi:10.1021/jacs.5b10614 (2015). 

  75. Hailegnaw, B. et al. Inverted (p-i-n) perovskite solar cells using a low temperature processed TiOx interlayer. RSC Adv., 8, 24836-24846, doi:10.1039/C8RA03993C (2018). 

  76. Lv, Y. et al. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. ACS Appl. Mater. Interfaces, 10, 23928-23937, doi:10.1021/acsami.8b07346 (2018). 

  77. Jiang, Q., Zhang, X. & You, J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 14, 1801154, doi:10.1002/smll.201801154 (2018). 

  78. Lee, J. - W. et al. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc., 140, 6317-6324, doi:10.1021/jacs.8b01037 (2018). 

  79. Abuhelaiqa, M. et al. Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy Environ. Sci., 12, 1910-1917, doi:10.1039/C9EE00453J (2019). 

  80. Jiang, Q. et al. Enhanced electron extraction using SnO 2 for high -efficiency planar-structure HC(NH 2 ) 2 PbI 3 -based perovskite solar cells. Nat. Energy, 2, 16177 (2017). 

  81. Yang, D. et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun., 9, 3239, doi:10.1038/s41467-018-05760-x (2018). 

  82. Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci., 9, 3128-3134, doi:10.1039/C6EE02390H (2016). 

  83. Lee, Y. et al. Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Adv. Sci., 5, 1800130, doi:10.1002/advs.201800130 (2018). 

  84. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460-466, doi:10.1038/s41566-019-0398-2 (2019). 

  85. Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy , 3, 68-74, doi:10.1038/s41560-017-0067-y (2018). 

  86. Wang, L. et al. A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363, 265, doi:10.1126/science.aau5701 (2019). 

  87. Wang, R. et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 3, 1464-1477, doi : https://doi.org/10.1016/j.joule.2019.04.005 (2019). 

  88. Cao, T. et al. Fullerene Derivative-Modified SnO2 Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Appl. Mater. Interfaces, 11, 33825-33834, doi:10.1021/acsami.9b09238 (2019). 

  89. Wang, J., Datta, K., Weijtens, C. H. L., Wienk, M. M. & Janssen, R. A. J. Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater., 29, 1905883, doi:10.1002/adfm.201905883 (2019). 

  90. Hill, R. B. M. et al. Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells. ACS Appl. Energy Mater., 2, 2402-2408, doi:10.1021/acsaem.9b00141 (2019). 

  91. Hou, M. et al. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. ACS Appl. Mater. Interfaces, 10, 30607-30613, doi:10.1021/acsami.8b10332 (2018). 

  92. Zuo, L. et al. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Lett., 17, 269-275, doi:10.1021/acs.nanolett.6b04015 (2017). 

  93. Tu, B. et al. Novel Molecular Doping Mechanism for n-Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells. Adv. Mater., 31, 1805944, doi:10.1002/adma.201805944 (2019). 

  94. Park, S. Y. et al. Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. J. Phys..Chem. Lett., 9, 5460-5467, doi:10.1021/acs.jpclett.8b02408 (2018). 

  95. Liu, C. et al. Hydrothermally Treated SnO2 as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Adv. Funct. Mater., 29, 1807604, doi:10.1002/adfm.201807604 (2019). 

  96. Ai, Y. et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells. Sol. Energy, 194, 541-547, doi:https://doi.org/10.1016/j.solener.2019.11.004 (2019). 

  97. Jiang, E. et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 11, 36727-36734, doi:10.1021/acsami.9b11817 (2019). 

  98. Luan, Y. et al. High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2,2,2-Trifluoroethanol-Incorporated SnO2. iScience, 16, 433-441, doi:10.1016/j.isci.2019.06.004 (2019). 

  99. Zhu, Z. et al. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Adv Mater., 28, 6478-6484, doi:10.1002/adma.201600619 (2016). 

  100. Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun., 8, 13938, doi:10.1038/ncomms13938 (2017). 

  101. Hoffmann, L. et al. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability. ACS Appl. Mater. Interfaces, 10, 6006-6013, doi:10.1021/acsami.7b17701 (2018). 

  102. Shin, S. S. et al. Colloidally prepared La - doped BaSnO electrodes for efficient, photostable perovskite solar cells. Science, 356, 167, doi:10.1126/science.aam6620 (2017). 

  103. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol., 11, 75-81, doi:10.1038/nnano.2015.230 (2016). 

  104. Jiang, T. & Fu, W. Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers. RSC Adv., 8, 5897-5901, doi:10.1039/C8RA00248G (2018). 

  105. Chiang, Y.-H. et al. Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. J. Mater. Chem. A, 5, 25485-25493, doi:10.1039/C7TA07775K (2017). 

  106. Fang, R. et al. [6,6]-Phenyl-C61-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로