$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Low-dose CT Image Denoising Using Classification Densely Connected Residual Network 원문보기

KSII Transactions on internet and information systems : TIIS, v.14 no.6, 2020년, pp.2480 - 2496  

Ming, Jun (School of Electronic Information, Wuhan University) ,  Yi, Benshun (School of Electronic Information, Wuhan University) ,  Zhang, Yungang (School of Electronic Information, Wuhan University) ,  Li, Huixin (School of Electronic Information, Wuhan University)

Abstract AI-Helper 아이콘AI-Helper

Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult...

주제어

표/그림 (15)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In order to make the evaluation of the image quality more in line with people's subjective feelings, SSIM evaluates the image quality based on brightness, contrast, and structure.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. D. P. Naidich, C. H. Marshall, C. Gribbin, R. S. Arams, and D. I. McCauley, "Low-dose of the lungs: preliminary observations," Radiology, vol.175, no.3, pp.729-731, Jun. 1990. 

  2. I. Mori, Y. Machida,M. Osanai, and K. Iinuma, "Photon starvation artifacts of X-ray CT: their true cause and a solution," Radiological physics and technology, vol.6, no.1, pp. 130-141, Jan. 2013. 

  3. Kachelriess M, Watzke O and Kalender W A, "Kalender 2001 Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT," Medical physics, vol. 28, no.4, pp. 475-490, Apr. 2001. 

  4. J. Wang, T. Li, H. Lu, and Z. Liang, "Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography," IEEE transactions on medical imaging, vol. 25, no.10, pp. 1272-1283, Oct. 2006. 

  5. A. Manduca, L. Yu, J. D. Trzasko, N. Khaylova, J. M. Kofler, C. M. McCollough, and J. G. Fletcher, "Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT," Medical physics, vol. 36, no.11, pp. 4911-4919, Nov. 2009. 

  6. M. Balda, J. Hornegger, and B. Heismann, "Ray contribution masks for structure adaptive sinogram filtering," IEEE transactions on medical imaging, vol. 31, no.6, pp. 1228-1239, Jun. 2012. 

  7. B. R. Whiting, "Signal statistics in x-ray computed tomography," in Proc. of SPIE Medical Imaging, vol. 4682, pp. 53-60, May, 2002. 

  8. Mengfei Li, Yunsong Zhao, and Peng Zhang, "Accurate Iterative FBP Reconstruction Method for Material Decomposition of Dual Energy CT," IEEE transactions on medical imaging, vol. 38, no.3, pp. 802-812, Mar. 2019. 

  9. Z. Li, L. Yu, J. D. Trzasko, D. S. Lake, D. J. Blezek, J. G. Fletcher, C. H. McCollough, and A. Manduca, "Adaptive nonlocal means filtering based on local noise level for CT denoising," Medical physics, vol.41, no.1, pp. 011908, 2014. 

  10. D. Kang, P. Slomka, R. Nakazato, J. Woo, D. S. Berman, C.-C. J. Kuo, and D. Dey, "Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm," in Proc. of SPIE Medical Imaging, vol. 8669, pp. 86692G, Mar. 2013. 

  11. Y. Chen, X. Yin, L. Shi, H. Shu, L. Luo, J.-L. Coatrieux, and C. Toumoulin, "Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing," Physics in Medicine & Biology, vol.58, no.16, pp. 5803-5820, Aug. 2013. 

  12. Y. Chen, J. Liu, Y. Hu, J. Yang, L. Shi, H. Shu, Z. Gui, G. Coatrieux, and L. Luo, "Discriminative feature representation: an effective postprocessing solution to low dose CT imaging," Physics in Medicine & Biology, vol.62, no.6, pp. 2103-2131, 2017. 

  13. M. Diwakar, M. Kumar, "CT image denoising using NLM and correlation-based wavelet packet thresholding," IET Image Processing, vol.12, no.5, pp.708-715, May. 2018. 

  14. K. B. Khan, M. Shahid, H. Ullah, E. Rehman and M. M. Khan, "Adaptive trimmed mean autoregressive model for reduction of Poisson noise in scintigraphic images," IIUM Engineering Journal, vol. 19, no. 2, pp. 68-79, Dec. 2018. 

  15. K. B. Khan, A. A. Khaliq, M. Shahid and J. A. Shah, "A new approach of weighted gradient filter for denoising of medical images in the presence of Poisson noise," Tehnicki vjesnik, vol.23, no.6, pp. 1755-1762, 2016. 

  16. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.521, no.7553, pp. 436-444, May. 2015. 

  17. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, "Low-dose CT denoising with convolutional neural network," in Proc. of 14th IEEE International Symposium on Biomedical Imaging, pp.143-146, Apr. 18-21, 2017. 

  18. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, "Low-dose CT via convolutional neural network," Biomedical Optics Express, vol.8, no.2, pp. 679-694, Feb. 2017. 

  19. H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, "Low-dose CT with a residual encoder-decoder convolutional neural network," IEEE transactions on medical imaging, vol.36, no.12, pp. 2524-2535, Dec. 2017. 

  20. E. Kang, J. Min, and J. C. Ye, "A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction," Medical physics, vol.44, no.10, pp. e360-e375, Oct. 2017. 

  21. E. Kang, W. Chang, J. Yoo, and J. C. Ye, "Deep convolutional framelet denosing for low-dose CT via wavelet residual network," IEEE transactions on medical imaging, vol.37, no.6, pp. 1358-1369, Jun. 2018. 

  22. W. Yang, H. Zhang, J. Yang, J. Wu, X. Yin, Y. Chen, H. Shu, L. Luo, G. Coatrieux, Z. Gui, and Q. Feng, "Improving low- dose CT image using residual convolutional network," IEEE Access, vol.5, pp. 24698 - 24705, Oct. 2017. 

  23. M. Gholizadeh-Ansari, J. Alirezaie, and P. Babyn, "Low-dose CT denoising with dilated residual network," in Proc. of 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5117-5120, Jul. 18-21,2018. 

  24. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, Jun. 26-Jul. 1, 2016. 

  25. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700-4708, Jul. 21-26, 2017 . 

  26. S. Ioffe, and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. of the 32nd International Conference on Machine Learning, pp.448-456, Jul. 7-9, 2015. 

  27. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," IEEE Transactions on Image Processing, vol.26, no.7, pp. 3142-3155, Jul. 2017. 

  28. V. Nair, and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proc. of the 27th International Conference on Machine Learning, pp.807-814, Jun. 21-24, 2010. 

  29. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell "Caffe: Convolutional architecture for fast feature embedding," in Proc. of the 22nd ACM international conference on Multimedia, pp.675-678, Nov. 3-7 2014. 

  30. K. ClarkEmail, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, "The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository," Journal of digital imaging, vol.26, no.6, pp. 1045-1057, June , Dec. 2013. 

  31. D Zeng, J Huang, Z Bian, et al, "A simple low-dose X-ray CT simulation from high-dose scan," IEEE Transactions on Nuclear Science, vol.62, no.5, pp.2226-2233, Oct. 2015. 

  32. D. P. Kingma, and J. Ba, "Adam: A method for stochastic optimization," in Proc. of the 3rd International Conference for Learning Representations, pp.1-15, 2014. 

  33. K. Dabov, A. Foi, V. Katkovnik, and K, Egiazarian, "Image denoising with block-matching and 3D filtering," in Proc. of. SPIE, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, vol. 6064, pp.606414, Jan. 2006. 

  34. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing, vol.13, no.4, pp.600-612, Apr. 2004. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로