최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Communications for statistical applications and methods = 한국통계학회논문집, v.27 no.3, 2020년, pp.365 - 376
Jang, Jungteak (Department of Statistics, Hankuk University of Foreign Studies) , Kang, Kee-Hoon (Department of Statistics, Hankuk University of Foreign Studies)
Interval-valued data, a type of symbolic data, is given as an interval in which the observation object is not a single value. It can also occur frequently in the process of aggregating large databases into a form that is easy to manage. Various regression methods for interval-valued data have been p...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Ahn J, Peng M, Park C, and Jeon Y (2012). A resampling approach for interval-valued data regression, Statistical Analysis and Data Mining, 5, 336-348.
Billard L and Diday E (2000). Regression analysis for interval-valued data. In Data Analysis, Classification, and Related Methods, (H. A. L. Kiers, J.-P Rassoon, P. J. F. Groenen, and M. Schader (eds), pp. 369-374), Springer-Verlag, Berlin.
Billard L and Diday E (2002). Symbolic regression analysis. In Classification, Clustering and Data Analysis, (K. Jajuga, A. Sokolowski, and H.-H Bock (eds), pp. 281-288), Springer-Verlag, Berlin.
Edwin KPC and Stanislaw HZ (2013). An Introduction to Optimization (4th ed), Wiley, New Jersey.
Fagundes RAA, De Souza RMCR, and Cysneiros FJA (2014). Interval kernel regression, Neurocomputing, 128, 371-388.
Im S and Kang K (2018). On regression analysis of interval-valued data, Journal of the Korean Data & Information Science Society, 29, 351-365.
Lima Neto EA and De Carvalho FAT (2008). Center and range method for fitting and linear regression model to symbolic interval data, Computational Statistics and Data Analysis, 52, 1500-1515.
Lima Neto EA and De Carvalho FAT (2010). Constrained linear regression models for symbolic interval-valued variables, Computational Statistics and Data Analysis, 54, 333-347.
Lima Neto EA and De Carvalho FAT (2017). Nonlinear regression applied to interval-valued data, Pattern Analysis and Applications, 20, 809-824.
Lima Neto EA, De Carvalho FAT, and Tenorio C (2004). Univariate and multivariate linear regression methods to predict interval-valued features. In Advances in Artificial Intelligence 2004 (G.I. Webb and X. Yu (eds), Vol 3339, pp. 526-537), Springer, Berlin, Heidelberg.
Nadaraya EA (1964). On estimating regression, Theory of Probability and Its Application, 10, 186-190.
Qin Z (2007). The relationships between CG, BFGS, and two limited-memory algorithms, Electronic Journal of Undergraduate Mathematics, 12, 5-20.
Ruppert D, Sheather SJ, andWand MP (1995). An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257-1270.
Watson GS (1964). Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 26, 359-372.
Xu W (2010). Symbolic data analysis: interval-valued data regression (Ph.D, dissertation), University of Georgia,
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.