$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술
Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils 원문보기

자원환경지질 = Economic and environmental geology, v.53 no.4, 2020년, pp.441 - 477  

이상우 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ,  이우춘 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ,  이상훈 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS)) ,  김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소(RINS))

초록
AI-Helper 아이콘AI-Helper

매년 다량 발생되고 있는 정화토가 적절하게 재이용 또는 재활용되지 못하고 반출 처리장에 적치되어 또 다른 환경적 이슈가 되고 있다. 이에 본 논문에서는 이러한 정화토의 재이용 및 재활용을 활성화하기 위하여 필요한 정화토의 토양 질 회복 기술에 대한 연구 및 개발 동향을 조사하였다. 이를 위해 먼저 정화기술별 토양 특성의 변화 양상을 살펴보고, 정화공정에 따른 토양 질의 열화 특성을 파악하였다. 뿐만 아니라 정화토 재이용 및 재활용을 위한 정책적 관련 사항들을 정리하고, 향후 필요한 연구들에 대하여 제안하였다. 본 논문은 국내외 관련 문헌들을 검색하여 작성하였다. 키워드 검색을 통하여 정화기술별 토양 특성의 변화와 토양 개량 및 회복 기술과 연관된 문헌을 조사하였으며, 본문에서는 주로 최근에 발표된 문헌들을 바탕으로 논의하였다. 뿐만 아니라, 제 1, 2차 토양보전기본계획을 참고하여 정화토 재이용 및 재활용과 관련된 정책적 사항들을 정리하였다. 현재까지 국내에서 가장 많이 적용된 토양경작, 토양세척, 열탈착 등을 대상으로 정화공정에 따른 토양의 특성 변화를 정리한 결과, 적용하는 정화기술에 따라서 매우 상이하게 나타나는 것으로 조사되었다. 특히 정화공정을 거치면서 토양 질이 열화되는 양상이 정화기술에 따라서 다르게 나타났다. 토양 개량 및 회복 기술은 크게 무기 개량제, 유기 개량제, 생물학적 개량제 등의 제제를 이용한 방법들로 구분할 수 있으며, 각 개량제에는 다양한 물질들이 활용되고 있고, 각 물질에 따라 개선 또는 향상되는 토양의 특성이 달랐다. 하지만, 각 정화기술별 열화되는 토양 질 회복을 위한 연구들은 현재까지 활발하게 수행되지 않은 것으로 조사되었다. 제 2차 토양보전기본계획에서는 정화토의 품질인증제, 목표관리제 등과 같은 정책적 방안이 명시되어 있음으로써 향후 정화토의 재이용 및 재활용이 촉진될 수 있을 것으로 예상된다. 정화토의 재이용 및 재활용을 위해서는 적용된 정화기술과 미래 용도를 고려한 공공활용성을 담보한 회복 기술들이 개발되어야 할 것으로 판단된다. 이와 더불어 제 2차 토양보전기본계획에서 제시한 정화토의 적극적 활용을 위해서는 이를 뒷받침할 수 있는 구체적이고 세부적인 정책 추진 방안이 마련되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend...

주제어

표/그림 (15)

질의응답

핵심어 질문 논문에서 추출한 답변
현재까지 알려진 토양오염물질은 몇 가지인가? 이렇게 자연 생태계 및 환경에서 다양한 역할을 수행하고 있는 토양을 인간이 잘못 이용함으로써 오염시키고 있으며, 이를 정화하고 토양 생태계를 복원하는 데 많은 노력과 비용이 소요되고 있다. 현재까지 알려진 토양오염물질은 약 346가지며, 이러한 오염물질의 특성에 따라 휘발성 오염물질, 준휘발성 오염물질, 유류 오염물질, 무기 오염물질, 방사성오염물질, 폭발성 오염물질 등으로 대분할 수 있다(Yun, 2010). 이러한 물질로 오염된 토양을 정화하기 위하여 물리·화학적, 열적, 생물학적 기술들이 이용되고 있다(Lim et al.
토양의 환경 생태학적 주요한 기능은 무엇이 있는가? 토양의 환경 생태학적 주요한 기능은 양분공급, 자원순환, 작물생산, 탄소저장, 수자원 함량, 생물 다양성 유지 등이 있다. 이렇게 자연 생태계 및 환경에서 다양한 역할을 수행하고 있는 토양을 인간이 잘못 이용함으로써 오염시키고 있으며, 이를 정화하고 토양 생태계를 복원하는 데 많은 노력과 비용이 소요되고 있다.
토양오염물질로 오염된 토양을 정화하기 위하여 어떤 기술들이 이용되는가? 현재까지 알려진 토양오염물질은 약 346가지며, 이러한 오염물질의 특성에 따라 휘발성 오염물질, 준휘발성 오염물질, 유류 오염물질, 무기 오염물질, 방사성오염물질, 폭발성 오염물질 등으로 대분할 수 있다(Yun, 2010). 이러한 물질로 오염된 토양을 정화하기 위하여 물리·화학적, 열적, 생물학적 기술들이 이용되고 있다(Lim et al., 2016a). 특히 토양 내 오염물질을 제거하거나 독성을 저감하기 위하여 부지 특이성을 반영한 정화기술들을 적용하여 위해성을 줄일 수 있지만 그러한 정화 과정을 통하여 토양의 질은 열화될 수 있다(Guo et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (299)

  1. Abayneh, A. B. and Quanyuan, C. (2018) Surfactant enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: A Review, Pedosphere, 28(3), 383-410. 

  2. Adams, R. H. and Guzman-Osorioheavily, F. J. (2008) Evaluation of land farming and chemico-biological stabilization for treatment of contaminated sediments in a tropical environment. Int. J. Environ. Sci. Tech., v.5(2), p.169-178. 

  3. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. and Straughan, I. A. (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystem: a review. J. Environ. Qual., v.9, p.333-344. 

  4. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Ok, Y. S. (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, v.99, p.19-33. 

  5. Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Prog. Energy Combust. Sci., v.36, p.27-363. 

  6. Albiach, R., Canet, R. and Pomares, F., (2000) Ingelmo, F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol., v.75, p.43-48. 

  7. Aleem, M., Hanna, N. and Sabry, S. (2000) Relationship between wheat root characteristics and grain yield in sandy and clay soils. Ann. Agric. Sic., 3(Special), p.977-995. 

  8. Ali, H., Khan, E. and Sajad, M. A. (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere, v.91(7), p.869-881(2013). 

  9. Al-Omran, A. M., Sheta, A. S., Falatah, A. M. and Al-Harbi, A. R. (2005) Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manage., v.73, p.43-55. 

  10. Anastopoulos, I., Massas, I. and Pogka, E.E., Chatzipavlidis, I., Ehaliotis C. (2019) Organic materials may greatly enhance Ni and Pb progressive immobilization into the oxidisable soil fraction, acting as providers of sorption sites and microbial substrates. Geoderma, v.353, p.482-492. 

  11. Angin, D. and Sensoz, S. (2014) Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.), Int. J. Phytoremed., 16, 684-693. 

  12. Antolin, M. C., Pascual, L., Garcia, C., Polo, A. and Sanchez-Diaz M. (2005) Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop. Res., v.94, p.224-237. 

  13. Badia, D. and Marti, C. (2003) Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Res. Manag., v.17(1), p.23-41. 

  14. Bandick, A. K. and Dick, R. P. (1999) Field management effects on soil enzyme activities. Soil Biol. Biochem., v.31, p.1471-1479. 

  15. Beesley, L. and Marmiroli, M. (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut., v.159, p.474-480. 

  16. Beesley, L., Moreno-Jimenez, E. and Gomez-Eyles, J. L. (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multielement polluted soil. Environ. Pollut., v.158(6), p.2282-2287. 

  17. Beiyuan, J. Z., Lau, A. Y. T., Tsang, D. C. W., Zhang, W. H., Kao, C. M., Baek, K., Ok, Y. S. and Li, X. D. (2018) Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution of soil stabilization. Sci. Total Environ., v.612, p.1463-1472. 

  18. Beiyuan, J. Z., Tsang, D. C. W., Valix, M., Zhang, W. H., Yang, X., Ok, Y. S. and Li, X. D. (2017) Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, v.166, p.489-496. 

  19. Benitez, E., Romero, E., Gomez, M., Gallardo-Lara, F. and Nogales, R. (2001) Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water Air Soil Poll., v.132, p.75-87. 

  20. Benkhelifa, M., Belkhodja, M., Daoud, Y., and Tessier, D. (2008) Effects of Maghnian bentonite on physical properties of sandy soils under semi-arid Mediterranean climate, PK. J. biol. sci. v.11(1), p.17-25. 

  21. Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T. and Roger-Estrade, J. (2015) Earthworm services for cropping systems. A review. Agron. Sustain. Dev., v.35, p.553-567. 

  22. Besalatpour, A., Hajabbasi, M. A., Khoshgoftarmanesh, A. H. and Dorostkar, V. (2011) Landfarming process effects on biochemical properties of petroleum contaminated soils. Soil. Sediment. Contam., v.20(2), p234-248. 

  23. Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. and Leyval, C. (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability, Environ. Pollut., v.156(3), p.671-677. 

  24. Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D. and Brun, J. J. (2013) A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci., v.64, p.161-182. 

  25. Bonanomi, G., Ascoli, R. D, Scotti, R., Gaglione, S. A., Caceres, M.G., Sultana, S., Scelza, R., Rao, M.A. and Zoina, A. (2014) Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels, Agric., Ecosyst. Environ., v.192(1), p.1-7. 

  26. Bonnard, M., Devin, S., Leyval, C. and Morel, J. L., (2010) Vasseur, P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicol. Environ. Saf., v.73(5), p.955-960. 

  27. Borchardt, G., (1989) Smectites. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.675-727. 

  28. Bossolani, J. W., Crusciol, C. A. C., Merloti, L. F., Moretti, L. G., Costa, N. R., Tsai, S. M. and Kuramae, E. E. (2020) Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma, v.375(1), 114476p. 

  29. Boyer, S. and Wratten, S. D. (2010) The potential of earthworms to restore ecosystem services after opencast mining - a review. Basic Appl. Ecol., v.11, p.196-203. 

  30. Butt, K. R. (1999) Inoculation of earthworms into reclaimed soils: the UK experience. Land Degrad. Dev., v.10, p.565-575. 

  31. Butt, K. R. (2008) Earthworms in soil restoration: lessons learned from United Kingdom case studies of land reclamation. Restor. Ecol., v.16, p.637-641. 

  32. Byun, K.W. (2019) Soil conditioner and manufacturing method thereof, Korean patent, 10-2023738. 

  33. Caires, E. F. and Guimaraes, A. M. (2018) A novel phosphogypsum application recommendation method under continuous no-till management in Brazil. Agron. J., v.110(5), p.1987-1995 

  34. Caires, E. F., Joris, H. A. W. and Churka, S. (2011) Longterm effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manage., v.27(1), p.45-53. 

  35. Campisi, T., Abbondanzi, F., Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., Laurora, A. and Passaglia, E. (2016) Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays). Catena. v.140, p.66-76. 

  36. Capowiez, Y., Dittbrenner, N., Rault, M., Triebskorn, R., Hedde, M. and Mazzia, C. (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ. Pollut., v.158, p.388-393. 

  37. Cebron, A., Beguiristain, T., Faure, P., Norini, M. P., Masfaraud, J. F. and Leyval, C. (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorptiontreated soil. Appl. Envron. Microbiol., v.75(19), p.6322-6330. 

  38. Certinini, G., (2005) Effects of fire on properties of forest soils: a review. Oecologia, v.143(1), p.1-10. 

  39. Chaudhary, D. K., Bajagain, R., Jeong, S. W. and Kim, J. (2019) Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J. Microbiol. Biotechnol., v.35(7), p.99. 

  40. Chen, S. (2015)Evaluation of Compost Topdressing, Compost Tea and Cultivation on Tall Fescue Quality, Soil Physical Properties and Soil Microbial Activity. MS Thesis. Department of Plant Sciences and Landscaping Architecture, University of Maryland, College Park, College Park, MD. 

  41. Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B. and Cayuela, M. L. (2018) The long-term role of organic amendments in building soil nutrient fertility: a metaanalysis and review. Nutr. Cycl. Agroecosyst., v.111, p.103-125. 

  42. Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D. and Julson, J. L. (2014) Effect of biochar on chemical properties of acidic soil. Archives Agron. Soil Sci., v.60(3), p.393-404. 

  43. Choi, H. S., Jung, J. S., Kuk, Y. I., Choi, I. Y. and Jung, S. K. (2019) Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes. J. Korea Organic Resources Recycling Association, v. 27(4), p.15-24. 

  44. Choi, S. I., Lee, G. T. and Yang, J. K. (2009) Soil pollution management and restoration. Donghwa Tech. Publish., 209p. 

  45. Crogger, C. G. (2005) Potential compost benefits for restoration of soils disturbed by urban development, Compost Sci. Util., v.13, p.243-251. 

  46. Curry, J. P. and Boyle, K. E. (1987) Growth rates, establishment, and effects on herbage yield of introduced earthworms in grassland on reclaimed cutover peat. Biol. Fertil. Soils, v.3, p.95-98. 

  47. Czaban, J. and Siebielec, G. (2013) Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Pol. J. Environ. Stud., v.22(6), p.1669-1676. 

  48. Diacono, M. and Montemurro, F. (2010) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. Dev., v.30, p.401-422. 

  49. Diacono, M. and Montemurro, F. (2018) Long-term effects of organic amendments on soil fertility: a review. Agron. Sustain. (2010) Dev., v.30, p.401-422, in: Ayer, N.W. and Dias, G. Supplying renewable energy for Canadian cement production: life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. J. Clean. Prod., v.175, p.237-25. 

  50. Dinesh, R., Srinivasan, V., Hamza, S. and Manjusha, A. (2010) Shortterm incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol., v.101, p.4697-4702. 

  51. Dittbrenner, N., Triebskorn, R., Moser, I. and Capowiez, Y. (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology, v.19, p.1567-1573. 

  52. Dixon, J. B. (1989) Kaolin and serpentine group minerals. In: Dixon, J. B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1. SSSA, Madison, WI, p.467-525. 

  53. Doran, J. W., Fraser, D. G., Culik, M. N. and Liebhardt, W. C. (1988) Influence of alternative and conventional agricultural management on soil microbial process and nitrogen availability. Am. J. Altern. Agric., v.2, p.99-106. 

  54. During, R. A. and Gath, S. (2002) Utilization of municipal organic wastes in agriculture: where do we stand, where will we go?. J. Plant Nutr. Soil Sci., v.165, p.544-556. 

  55. Dzantor, E. K., Pettigrew, H., Adeleke, E. and Hui, D. (2013) Use of Fly Ash as Soil Amendment for Biofuel Feedstock Production with Concomitant Disposal of Waste Accumulations. WOCA, World of Coal Ash Association, Lexington, KY, April p.22-25. 

  56. Edwards, C. A. and Bohlen, P. J. (1996) Biology and Ecology of Earthworms. The Influence of Environmental Factors on Earthworms, Champman & Hall, UK, London, p.196-229. 

  57. Elbl, J., Makova, J., Javorekova, S., Medo, J., Kintl, A., Losak, T. and Lukas, V. (2019) Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agron, v.9, p.485. 

  58. El-Mageed, T. A. A., Rady, M. M., Taha, R. S., El Azeam, S. A., Simpson, C. R. and Semida, W. M. (2020) Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, v.261(5), 108930p. 

  59. Eriksen, J. (2005)Gross sulphur mineralisation-immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem., v.37, p.2216-2224. 

  60. Evanko, C. R. and Dzombak, D. A. (1997) Remediation of metals-contaminated soils and groundwater. GWRTAC technol. eval. report, 28. 

  61. Eviner, V. and Chapin, F. (2011) Plant species provide vital ecosystem functions for sustainable agriculture, rangeland management, and restoration. Calif. Agric., v.55(6), p.54-60. 

  62. Fanning, D. S., Keramidas, V. Z. and El-Desoky, M. A. (1989) Micas. In: Dixon, J.B., Weed, S. B.(Eds.), Minerals in soil environments, SSSA Book Ser., 1, SSSA. Madison, WI, p.551-634. 

  63. Faucette, L. B., Jordan, C. F., Risse, L. M., Cabrera, M., Coleman, D. C. and West, L. T. (2005) Evaluation of stormwater from compost and conventional erosion control practices in construction activities. J. Soil Water Conserv., v.60, p.288-298. 

  64. Filho, A. C. A. C. Penn C., Crusciol, C. A. C. and Calonego, J. C. (2017) Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agric. Ecosyst. Environ., v.241, p.11-23. 

  65. Forey, E., Chauvat, M., Coulibaly, S. F. M., Langlois, E., Barot, S. and Clause, J. (2018) Inoculation of an ecosystem engineer (Earthworm: Lumbricus terrestris) during experimental grassland restoration: Consequences for above and belowground soil compartments. Appl. Soil Ecol., v.125, p.148-155. 

  66. Fraser, P. M., Beare, M. H., Butler, R. C., Harrison-Kirk, T. and Piercy, J. E. (2003) Interactions between earthworms (Aporrectodea caliginosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia, v.47, p.870-876. 

  67. Galang, M. A., Markewitz, D. and Morris, L. A. (2010) Soil phosphorus transformations under forest burning and laboratory heat treatments. Geoderma, v.155(3-4), p.401-408. 

  68. Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes: strategies for their rehabilitation. In: Garcia, C., Hernandez, T. (Eds.), Research and Perspectives of Soil Enzymology in Spain. CEBAS, CSIC, Murcia, p.93-143. 

  69. Garcia, C., Hernandez, T., Pascual, J. A., Moreno, J. L. and Ros, M. (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes-strategies for their rehabilitation. In: C. Garcia, M. T. Hernandez, (Eds.), Research and Perspectives of Soil Enzymology in Spain. Centro de Edafologia y Biologia Aplicada del Segura, Murcia, Spain, p.41-143. 

  70. Garcia-Corona, R., Benito, E., Blas, E. D. and Varela, M. E. (2004) Effects of heating on some physical properties related to its hydrological behaviour in two north-western Spanish soils. Int. J. Wildland Fire, v.13(2), p.195-199. 

  71. Getachew, A., Bass, A. M., Nelson, P. N. and Bird, M. I. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ., v.543, p.295-306. 

  72. Gill, J. S., Tisdall, J., Kusnarta Sukartono, I. G. M., and McKenzie, B. M., (2004) Physical properties of a clay loam soil mixed with sand. In: Super Soil 2004: 3rd Australian & New Zealand Soils Conference, University of Sydney, Australia. 

  73. Giovannini, G., Lucchesi, S. and Giachetti, M. (1990) Effect of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci., v.149(6), p.344-350. 

  74. Givaudan, N., Wiegand, C., Bot, B. L., Renault, D., Pallois, F., Llopis, S. and Binet, F. (2014) Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications. Soil Biol. Biochem., v.73, p.49-58. 

  75. Glass, D. W., Johnson, D. W., Blank, R. R. and Miller, W. W. (2008) Factors affecting mineral nitrogen transformations by soil heating: a laboratorysimulated fire study. Soil Sci., v.173(6), p.387-400. 

  76. Gond, D. P., Singh, S., Pal, A. and Tewary, B. K. (2013) Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils. J. Environ. Biol., p.539-544. 

  77. Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G. and Knicker, H. (2004) The effect of fire on soil organic matter e a review, Environ. Int., v.30(6), p.855-870. 

  78. Guo, A., Ding, L., Tang, Z., Zhao, Z. and Duan, G. (2019) Microbial response to $CaCO_3$ application in an acid soil in southern China, J. Environ. Sci., 79, 321- 329(2019). 

  79. Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. and Zhang, F. S. (2010) Significant acidification in major Chinese croplands, Science. v.327, p.1008-1010. 

  80. Guo, X. F., Zhao, G. H., Zhang, G. X., He, Q. S., Wei, Z. B., Zheng, W., Qian, T. W. and Wu, Q. T. (2018) Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere, v.209, p.776-782. 

  81. Guo, X.F., Wei, Z.B., Wu, Q.T., Li, C.P., Qian, T.W. and Zheng, W. (2016) Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments. Chemosphere, v.147, p.412-419. 

  82. Hahn, P.G., Bullington, L., Larkin, B., LaFlamme, K., Maron, J. L. andLekberg, Y. (2018) Effects of shortand long-term variation in resource conditions on soil fungal communities and plant responses to soil biota. Front. Plant Sci., 9, 1605p. 

  83. Han, D.,, Luo, D., Chen, Y. and Wang, G. (2013) Transfer of Cd, Pb, and Zn to water spinach from a polluted soil amended with lime and organic materials. J. Soil. Sediment., v.13, p.1360-1368. 

  84. Hartl, W,, Putz, B. and Erhart, E. (2003) Influence of rates and timing of biowaste compost application on rye yield and soil nitrate levels. Eur. J. Soil Biol., v.39, p.129-139. 

  85. Haynes, R. J. (2009) Reclamation and revegetation of fly ash disposal sites challenges and research needs. J. Environ. Manag., v.90, p.43-53. 

  86. Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S. A. M., Mohammadi, H. and Nicola, S. (2017) Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L, Agric. Water Manage., v.181, p.66-72. 

  87. He, Z. L., Calvert, D. V., Alva, A. K., Li, Y. C. and Banks, D. J. (2002) Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil, v.247, p.253-60. 

  88. Heo, H. J. and Lee, M. H. (2002) Surfactant-enhanced soil washing using tween and tergitol series surfactants for Kuwait soil heavily contaminated with crude oil. J. Soil Groundw. Environ., v.20(5), p.26-33. 

  89. Hera, C. (1996) The role of inorganic fertilizers and their management practices. Fertilizer Research, v.43, p.63-81. 

  90. Higa, T. (1991) Effective microorganisms: a biotechnology for mankind, Proc. First Int. Conf. Kyusei Nat. Farming, p.8-14. 

  91. Holland, J. E., Bennett, A. E., Newton, A. C., White, P. J., McKenzie, B. M., George, T. S., Pakeman, R. J., Bqailey, J. S., Fornara, D. A. and Hayes, R. C. (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ., v.610, p.316-332. 

  92. Hong, S. H., Lee, S. M. and Lee, E. Y. (2011) Bioremediation efficiency in oil contaminated soil using microbial agents. J. Microbiol. Biotechn., v.30(3), p.301-307. 

  93. Hooda, P. S. and Alloway, B. J. (1996) The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils. J. Agric. Sci., v.127, p.289-294. 

  94. Houben, D., Pircar, J. and Sonnet, P. (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability, J. Geochem. Explor., 123, 87-94(2012). 

  95. Hu, C. and Qi, Y. (2013) Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron., v.46, p.63-67. 

  96. Hu, X., Xue, Y., Long, L. and Zhang, K. (2018) Characteristics and batch experiments of acidand alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ, Sci. Pollut. Res., v.25(20), p.19932-19940. 

  97. Huang, Y. T., Hseu, Z. Y. and Hsi, H. C. (2011) Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, v.81, p.1244-1249. 

  98. Hwang, S., Moon, H., Gi, B. and Yun, S. (2014) A study on promotion of recycling of cleaned soil and improvement of management system i off-site remediation. Policy report, 2014-05. 

  99. Im, J. W., Yang, K., Jho, E. H. and Nam, K. P. (2015) Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere, v.138, p.253-258. 

  100. Izquierdo, M. and Querol, X. (2012) Review article - leaching behavior of elements from coal combustion fly ash: an overview. Int. J. Coal Geol., v.94, p.54-66. 

  101. Jayasinghe, G. Y. and Tokashiki, Y. (2012) Influence of coal fly ash pellet aggregates on the growth and nutrient composition of Brassica campestris and physicochemical properties of greysoils in Okinawa. J. Plant Nutr., v.35, p.453-470. 

  102. Jelusic, M. and Lestan, D., (2014) Effect of EDTA washing of metal polluted garden soils Part I: toxicity hazards and impact on soil properties. Sci. Total Environ., v.475, p.132-141. 

  103. Jelusic, M., Vodnik, D., Macek, I. and Lestan, D. (2014) Effect of EDTA washing of metal polluted garden soils Part II: can remediated soil be used as a plant substrate?. Sci. Total Environ., v.475, p.142-152. 

  104. Jeon, W., Seong, K., Lee, J., Oh, I., Lee, Y. and Ok, Y. S. (2010) Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth. Korean J. Soil Sci. Fert., v.43(4), p.484-489. 

  105. Jeong, S. W. (2019) Estimation of remediation cost for reducing cancer and non-cancer risk of a fuel contaminated site. J. Korean Soc. Environ. Eng., v.41(5), p.286-291. 

  106. Jez, E. and Lestan, D. (2016) EDTA retention and emissions from remediated soil. Chemosphere, v.151, p.202-209. 

  107. Jho, E. H., Ryu, H., Shin, D., Kim, Y. J., Choi, Y. J. and Nam, K. P. (2014) Prediction of landfarming period using degradation kinetics of petroleum hydrocarbons: test with artificially contaminated and field-aged soils and commercially available bacterial cultures. J. Soil. Sediment., v.14(1), p.138-145. 

  108. Joghan, A. K., Ghalavand, A., Aghaalikhani, M., Gholamhoseini, M. and Dolatabadian, A. (2012) How organic and chemical nitrogen fertilizers, zeolite, and combinations influence wheat yield and grain mineral content. J. Crop Improv., v.26(1), p.116-129. 

  109. Jones, C. G., Lawton, J. H. and Shachak, M. (1994) Organisms as ecosystem engineers. Oikos, v.69, p.373-386. 

  110. Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V. (2012) Biocharmediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem., v.45, p.113-124. 

  111. Jouquet, P. Blanchart, E. and Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Appl. Soil Ecol., v.73, p.34-40. 

  112. Jung, B. G. Ro, G. H. and Sung, N. C. (2009) Removal characteristics of TPHs and heavy metals in contaminated soil with ultrasonic washing. J. Eviron. Sci. Intl., v.18(4), p473-478. 

  113. Kaiser, K. and Zech, W. (2000) Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci., v.163(5), p.531-535. 

  114. Karhu, K., Mattila, T., Bergstrom, I. and Regina, K. (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short term pilot field study. Agric. Ecosyst. and Environ., v.140(1-2), p.309-313. 

  115. Kaurin, A., Cernilogar, Z. and Lestan, D. (2018) Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. Chemosphere, v.193, p.726-736. 

  116. Ketterings, Q. M., Bigham, J. M. and Laperche, V. (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J., v.64(3), p.1108-1117. 

  117. Khan, A. Z., Nigar, S., Khalil, S. K., Wahab, S., Rab, A., Khattak, M. K. and Henmi, T. (2013) Influence of synthetic zeolite application on seed development profile of soybean grown on allophanic soil. Pak. J. Bot., v.45(3), p.1063-1068. 

  118. Khan, M. R. and Singh, W. N. (2001) Effects of soil application of fly ash on the fusarial wilt on tomato cultivars. Int. J. Pest Manag., v.47, p.293-297. 

  119. Khorram, M. S., Zhang, W., Lin, D., Zheng, Y., Fang, H. and Yu, Y. (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. (China), v.44, p.269-279. 

  120. Kiersch, K., Kruse, J., Regier, T. Z. and Leinweber, P. (2012) Temperature resolved alter-ation of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS. Thermochim. Acta, v.537, p.36-43. 

  121. Kim, D., Ahn, B. and Lee, J. (2013) Impact of Environmentally-friendly Organic Agro-Materials on Chemical Properties of Remediated Soils. Korean J. Organic Aari., v.21(4), p.753-767. 

  122. Kim, I. S. and Lee, M. H. (2012) Pilot scale feasibility study for in-situ chemical oxidation using $H_2O_2$ solution conjugated with biodegradation to remediate a diesel contaminated site. J. Hazard. Mater., v.241-242, p.173-181. 

  123. Kim, K. H., Kim, K. Y., Kim, J. G., Sa, T. M., Suh, J. S., Shon, B. G., Yang, J. E., Eom, K. C., Lee, S. E., Jung, K. Y., Chung, D. Y., Jung, Y. T., Jung, J. D. and Hyun, H. N. (2008) Soil science. Hyangmunsa, 193p. 

  124. Kim, M., Kim, Y., Kang, S., Yun, H. and Hyun, B. (2012) Long-term Application Effects of Fertilizers and Amendments on Changes of Soil Organic Carbon in Paddy Soil. Korean J. Soil Sci. Fert., v.45(6), p.1108-1113. 

  125. Kim, Y. K., Jin, S. H., Choi, S. D., Lee, G. D. and Ra, D. G. (2011b) EM effectiveness on remediation of oil contaminated soil. J. Korean Soc. Environ. Technol., v.12(3), p.176-181. 

  126. Kim, Y., Lee, S., Ham, S., Kim. H, and Choi, Y. (2011a) Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts. Asian J. Turfgrass Sci.,v. 25(1), p.106-111. 

  127. Ko, I. W., Chang, Y. Y., Lee, C. H. and Kim, K. W. (2005) Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater., v.127(1), p.1-13. 

  128. Koh, I. H., Kim, G. S., Chang, Y. Y., Yang, J. K. and Moon, D. H. (2017) Characteristics of agricultural paddy soil contaminated by lead after bench-scale in-situ washing with $FeCl_3$ . J. Soil Groundw. Environ., v.22(1), p.18-26. 

  129. KEITI (Korea environmetal industry & technology institute) (2019) Trend analysis and DB construction for soil, groundwater technology, industry, and manpower statistics. 

  130. Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. and Heitman, J. L. (2020) The effects of compost incorporation on soil physical properties in urban soils - A concise review, J. Environ. Manage., v.261, 110209p. 

  131. Kristensen, A. H., Henriksen, K., Mortensen, L., Scow, K.M. and Moldrup, P. (2010) Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J., v.9(1), p.137-147. 

  132. Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schuth, C. and Graber. E. R. (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci. Total Environ., v.626, p.953-961. 

  133. Kumari, A., Lal, B. and Rai, U. N. (2016) Assessment of native plant species for phytoremediation of heavy metals growing near NTPC sites, Kahalgaon, India. Int. J. Phytorem., v.18(6), p.592-597. 

  134. Lazanyi, J. (2005) Effects of bentonite on the water budget of sandy soil. Culture Technology for Wheat and Corn. Symp. Int., July p.7-8. 

  135. Lee, D. S., Lim, S. S., Park, H. J., Yang, H. I., Park, S. I., Kwak, J. H. and Choi, W. J. (2019) Fly ash and zeolite decrease metal uptake but do not improve rice growth in paddy soils contaminated with Cu and Zn. Environ. Inter., v.129, p.551-564. 

  136. Lee, M, H., Chung, S. Y., Kang, D. W., Choi, S. L. and Kim, M. C. (2002) Surfactant enhanced in-situ soil flushing pilot test for the soil and groundwater remediation in an oil contaminated site. J. Soil Groundw. Environ., v.7(4), p.77-86. 

  137. Lee, M. Y. (2011) Landfarming treatment on aged and freshly diesel-contaminated soils. Ph.D. thesis, Korea University. 

  138. Lee, S., Kim, Y., Ham, S,. Lim, H., Choi, Y. and Park, K. (2013) Effect of Soldier Fly Casts Mixed Soil on Change of Soil Properties in Root Zone and Growth of Zoysiagrass. Weed Turf. Sci., v.2(3), p.298-305. 

  139. Lehmann, J. (2012) Biochar for environmental management: an introduction Biochar. Environ. Manag. Sci. Tech., v.25, p.15801-15811. 

  140. Li, H. Y., Wang, H., Wang, H. T., Xin, P. Y., Xu, X. H., Ma, Y., Liu, W. P., Teng, C. Y., Jiang, C. L., Lou, L. P., Arnold, W., Cralle, L., Zhu, Y. G., Chu, J. F., Givert, J. A. and Zhang, Z. J. (2018) The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, v.6, p.187. 

  141. Li, M., Ren, L., Zhang, J., Luo, L., Qin, P., Zhou, Y., Huang, C., Tang, J., Huang, H. and Chen, A. (2019) Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Tot. Environ., v.651, p.2166-2174. 

  142. Li, R. R. Duan, N. and Zhang, Y. H., (2017) Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: nutrients reuse and biogas enhancement. Waste Manag., v.70, p.247-254. 

  143. Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W., Oh, S., Yang, J. E. and Ok, Y. S. (2013) Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ. Earth Sci., v.69(1), p.11-20. 

  144. Lim, M. W., Von Lau, E. and Poh, P. E. (2016a) A comprehensive guide of remediation technologies for oil contaminated soil e present works and future directions. Mar. Pollut. Bull., v.109, p.14-45. 

  145. Lim, S. S., Lee, D. S., Kwak, J. H., Park, H. J., Kim, H. Y. and Choi, W. J. (2016b) Fly ash and zeolite amendments increase soil nutrient retention but decrease paddy rice growth in a low fertility soil. J. Soils Sediments, v.16(3), p.756-766. 

  146. Liu, B., Morkved, P. T., Frostegard, A. and Bakken, L. R. (2010) Denitrification gene pools, transcription and kinetics of NO, $N_2O$ and $N_2$ production as affected by soil pH. FEMS Microbiol. Ecol., v.72(3), p.407-417. 

  147. Liu, X. Y., Rashti, M. R., Esfandbod, M., Powell, B. and Chen, C. R. (2018) Liming improves soil microbial growth, but trash blanket placement increases labile carbon and nitrogen availability in a sugarcane soil of subtropical Australia. Soil Res., v.56(3), p.235-243. 

  148. Logan, T. J., Lindsay, B. J., Goins, L. E. and Ryan, J. A. (1997) Field assessment of sludge metal bioavailability to crops: sludge rate response. J. Environ. Qual. v.26, p.534-550. 

  149. Logsdon, S. D., Sauer, P. A. and Shipitalo, M. J. (2017) Compost improves urban soil and water quality. J. Water Resour. Protect., v.9, p.345-357. 

  150. Lopez-Periago, E. Nunez-Delgado, A. and Diaz-Fierros, F. (2002) Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study, Bioresour. Technol., v.84(2), p.105-111. 

  151. Lopez-Periago, E., Nunez-Delgado, A. and Diaz-Fierros, F. (2000) Groundwater contamination due to cattle slurry: modelling infiltration on the basis of soil column experiments. Water Res., vol34(3), p.1017-1029. 

  152. Luki?, B., Panico, A., Huguenot, D., Massimiliano, F., van Hullebusch, E. D. and Esposito, G. (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ. Technol. Rev., 6(1), 94-116. 

  153. Luo, Y., Dungait, J. A. J., Zhao, X., Brookes, P. C., Durenkamp, M., Li, G. and Lin, Q. (2018) Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil, Land Degrad. Dev., 29, 2183-2188. 

  154. Ma, F., Zhang, Q., Xu, D., Hou, D., Li, F. and Gu, Q. (2014) Mercury removal from contaminated soil by thermal treatment with $FeCl_3$ at reduced temperature. Chemosphere, v.117, p.388-393. 

  155. Mahar, A., Ping, W., Ronghua, L. and Zhang, Z. (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere, 25(4), 555-568. 

  156. Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S. Shahid, M., Abid, M. and Ullah, S. (2017) Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr., v.17, p.22-32. 

  157. Maiti, P. S., Sah, K. D., Gupta, S. K. and Banerjee, S. K. (2001) Evaluation of sewage sludge as a source of irrigation and manure. J. Indian Soc. Soil Sci., v.40, p.168-172. 

  158. Maiti, S. K. and Ghosh, D. (2020) Chapter 24 - Plant-soil interactions as a restoration tool, Climate Change and Soil Interactions, p.689-730. 

  159. Makino, T. (2014) Heavy metal contamination in Japan. Proc. Int. Forum Soil Groundw., KME (Korea Ministry of Environment), Seoul, Korea, 45p. 

  160. Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., Maejima, Y. and Sugahara, K. (2007) Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Environ. Pollut., v.147, p.112-119. 

  161. Makino, T., Takano, Y., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. and Sakurai, Y. (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and benchscale verification. Chemosphere, v.70, p.1035-1043. 

  162. Makoi, J. H. J. R. and Ndakidemi, P. A. (2008) Selected soil enzymes : Examples of their potential roles in the ecosystem. Afr. J. Biotechnol., v.7(3), p.181-191. 

  163. Malekian, R., Abedi-Koupai, J. and Eslamian, S. S. (2011) Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. J. Hazard. Mater., v.185, p.970-976. 

  164. Manya, J. J., (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol., v.46, 7939p. 

  165. Marashi, A. R. A. and Scullion, J. (2003) Earthworm casts form stable aggregates in physically degraded soils. Biol. Fertil. Soils, v.37, p.375-380. 

  166. Marin, J. A. Hernandez, T. and Garcia, C. (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity. Environ. Res., v.98(2), p.185-195. 

  167. Mattana, S., Petrovicova, B., Landi, L., Gelsomino, A., Cortes, P., Ortiz, O. and Renella, G. (2014) Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol., v.75, p.150-161. 

  168. Mattigod, S. V., Rai, D., Eary, L. F. and Ainsworth, C. C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J. Environ. Qual., v.19, p.188-201. 

  169. Ministry of Environment (2009) The first Soil Environment Conservation Master Plan. 

  170. Ministry of Environment (2020) The second Soil Environment Conservation Master Plan. 

  171. Mishra, P., Prasad, S. S., Babu, B. M. and Varalakshmi, L. (2001) Bentonite as an ameliorant in an alfisol a laboratory study. J. Irrig. Drain. Eng., v.127(2), p.118-122. 

  172. Mohammadshirazi, F., Brown, V. K., Heitman, J. L. and McLaughlin, R. A. (2016) Effects of tillage and compost amendment on infiltration in compacted soils. J. Soil Water Conserv., v.71(6), p.443-449. 

  173. Mojid, M. A., Wyseure, G. C. L. and Mustafa, S. M. T. (2012) Water use efficiency and productivity of wheat as a function of clay amendment. Environ. Control Biol., v.50, p.347-362. 

  174. Moon, D. H., Chang, Y. Y., Lee, M. H., Cheong, K. H., Ji, W. H., Koh, I. H., Choi, Y. L. and Park, J. H. (2016) Soil washing of heavy metal contaminated paddy soil using a $FeCl_3$ solution. Proc. Int. Res. Symp. Eng. Technol., Singapore, p.152-153. 

  175. Mudrak, O., Uteseny, K. and Frouz, J. (2012) Earthworms drive succession of both plant and Collembola communities in post-mining sites. Appl. Soil. Ecol., v.62, p.170-177. 

  176. Murphy, P. N. C. (2007) Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil. Eur. J. Soil. Sci.,v. 58, p.794-801. 

  177. Nair, A. and Ngouajio. M. (2012) Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol., v.58, p.45-55. 

  178. Najafinezhad, H., Sarvestani, Z. T., Sanavy, S. A. M. M. and Naghavi, H. (2015) Evaluation of yield and some physiological changes in corn and sorghum under irrigation regimes and application of barley residue, zeolite and superabsorbent polymer. Arch. Agron. Soil Sci., v.61(7), p.891-906. 

  179. Ndona, R. K., Friedel, J. K., Spornberger, A., Rinnofner, T. and Jezik, K. (2011) Effective microorganisms' (EM): an effective plant strengthening agent for tomatoes in protected cultivation. Biol. Agric. Hortic., v.27, p.189-203(2011). 

  180. Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N. and Cai, K. (2017) Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric., v.16(8), p.1819-1831. 

  181. Noori, M., Zendehdel, M. and Ahmadi, A. (2006) Using natural zeolite for improvement of soil salinity and crop yield. Toxicol. Environ. Chem. Rev., v.88(1), p.77-84. 

  182. Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (1997) Breakthrough of inorganic ions present in cattle slurry: soil column trials. Water Res., 31(11), 2892-2898. 

  183. Nunez-Delgado, A. Lopez-Periago, E. and Diaz-Fierros-Viqueira, F. (2002) Chloride, sodium, potassium and faecal bacteria levels in surface runoff and subsurface percolates from grassland plots amended with cattle slurry, Bioresour. Technol., 82(3), 261-271. 

  184. Nwaichi, E.O. and Chuku, L.C. (2017) Biological Soil Quality Indicators and Conditioners in a Plant- Assisted Remediation of Crude Oil Polluted Farmland. J. Environ. Prot., v.8(13), DOI: 10.4236/jep.2017.813100. 

  185. O'Brien, P. L., DeSutter, T. M. and Wick, F. F. (2018) Thermal remediation alters soil properties - a review, J. Environ. Manage., v.206, p.826-835. 

  186. Oh, T.G. (2004) Phytoremediation of diesel fuel contaminated soil using herbaceous plants. Master thesis, Korea University. 

  187. Olson, N. C., Gulliver, J. S., Nieber, J. L. and Kayhanian, M. (2013) Remediation to improve infiltration into compact soils. J. Environ. Manag., v.117, p.85-95. 

  188. Onagwu, B. O. (2019) Organic amendments applied to a degraded soil: short term effects on soil quality indicators. African J. Agric. Res., v.14(4), p.218-225. 

  189. Othman, N., Irwan, J. M., Hussain, N. and Abdul, S. T. (2011) Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: an overview. Int. J. Sustain. Constr. Eng. Technol., v.2(2), p.48-53. 

  190. Ozbahce, A., Tari, A. F., Gonulal, E. and Simsekli, N. (2018) Zeolite for enhancing yield and quality of potatoes cultivated under water-deficit conditions. Potato Res., p.1-13. 

  191. Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., Bolan, N. S., Rinklebe, J. and Oka, Y. S. (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Envrion. Int., v.134, 105046p. 

  192. Pandey, V. C. and Singh, N. (2010) Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ., v.136, p.16-27. 

  193. Pang, Z., Tayyab, M., Kong, C., Hu, C., Zhu, Z., Wei, X. and Yuan, Z. (2019) Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy, v.9(12), 808p. 

  194. Pape, A., Switzer, C., McCosh, C. and Knapp, C. W. (2015) Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, v.243-244, p.1-9. 

  195. Park, J. E., Lee, B., Lee, S., Kim, S. and Son, A. (2017) Application of enzymatic activity and arsenic respiratory gene quantification to evaluate the ecological functional state of stabilized soils nearby closed mines. J. Korean Soc. Environ. Eng., v.39(5), p.265-276. 

  196. Paul, E. A. and Clark, F. E. (1989) Soil microbiology and biochemistry, Academic Press, San Diego, California, p.32-46. 

  197. Peng, Y. and Sun, Y. (2012) Resources characteristics and market situation of bentonites at home and abroad. Metal Mine, v.4, p.95-99. 

  198. Pen-Mouratov, S., Shukurov, N., Yu, J., Rakhmonkulova, S., Kodirov, O., Barness, G., Kersten, M. and Steinberger, Y. (2014) Successive development of soil ecosystems at abandoned coal-ash landfills. Ecotoxicology, v.23(5), p.880-897. 

  199. Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29. 

  200. Qayyum, M. F., Rehman, M. Z. U., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J. and Ok, Y. S. (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, v.174, p.515-523. 

  201. Pousada-Ferradas, Y., Seoane-Labandeira, S., Mora- Gutierrez, A. and Nunez-Delgado, A. (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int. J. Environ. Sci. Tech., v.9, p.21-29. 

  202. Raiesi, F. (2006) Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric., Ecosyst. Environ., v.112(1), p.13-20. 

  203. Ram, L. C. and Masto, R. E. (2010) Review: an appraisal of the potential use of fly ash for reclaiming coal mine spoil. J. Environ. Manag., v.91, p.603-617. 

  204. Ram, L. C., Masto, R. E., Singh, S., Tripathi, R. C., Jha, S. K., Srivastava, N. K., Sinha, A. K., Selvi, V. A. and Sinha, A. (2011) An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR), World Acad. Sci. Eng. Technol., v.76, p.703-714. 

  205. Ram, L. C., Singh, S., Masto, R. E., Jha, S. K., Tripathi, R. C., Sinha, A. K., Srivastava, N. K. and Selvi, V. A. (2010) Potential of Indian Fly ashes as Soil Ameliorant: State-of-the-Art, 25th Int. Conf. Solid Waste Techn. and Manag., Philadelphia USA, March p.14-17. 

  206. Randhawa, P. S., Condron, L. M., Di, H. J., Sinaj, S. and McLenaghen, R. D. (2005) Effect of green manure addition on soil organic phosphorus mineralisation. Nutr. Cycl. Agroecosyst., v.73, p.181-189. 

  207. Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Macias, F., Monterroso, C. and Alvarez-Rodriguez, E. (2016) Aluminum fractionation and speciation in a coal mine dump: twenty years of timecourse evolution. Geoderma, v.273, p.45-53. 

  208. Rivas-Perez, I. M., Fernandez-Sanjurjo, M. J., Nunez-Delgado, A., Monterroso Martinez, C., Macias- Vazquez, F. and Alvarez-Rodriguez, E. (2019) Efficacy of two different reclamation strategies to improve chemical properties and to reduce Al toxicity in a lignite mine dump during a 20-year period, Land Degrad. Dev., v.30, p.658-669. 

  209. Roelcke, M., Han, Y., Schleef, K. H., Zhu, J. G., Liu, G., Cai, Z. C. and Richter, J. (2004) Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China. Pedosphere, v.14, p.449-460. 

  210. Roh, Y., Edwards, N. T., Lee, S. Y., Stiles, C. A., Armes, S. and Foss, J. E. (2000) Thermal treated soil for mercury removal: soil and phytotoxicity tests. J. Environ. Qual., v.29(2), p.415-424. 

  211. Ros, M., Hernandez, M. T. and Garcia, C. (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem., v.35, p.463-469. 

  212. Ros, M., Klammer, S., Knapp, B., Aichberger, K. and Insam, H. (2006) Longterm effects of compost amendment of soil on functional and structural diversity and microbial activity, Soil Use Manage., v.22, p.209-218. 

  213. Rosas, J. M., Vicente, F., Santos, A. and Romero, A. (2013) Soil remediation using soil washing followed by Fenton oxidation. Chem. Eng. J., v.220, p.125-132. 

  214. Roubickova, A., Mudrak, O., Frouz, J., (2009) Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fertil. Soils 45, 769-774. 

  215. Saviozzi, A., Biasci, A., Riffaldi, F. and Levi-Minzi, R. (1999) Long term effects of farmyard manure and sewage sludge on some soil biochemical characteristics. Biol. Fertil. Soils, v.30, p.100-106. 

  216. Sax, M. S., Bassuk, N.. van Es, H. and Rakow, D. (2017) Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban For, Urban Green., v.24, p.149-156. 

  217. Schmid, C. J., Murphy, J. A. and Murphy, S. (2017) Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam, J. Soil Water Conserv., v.72, p.55-64. 

  218. Scullion, J. and Malik, A. (2000) Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem., v.32, p.119-126. 

  219. Sertsu, S. M. and Sanchez, P. A. (1978) Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice. Soil Sci. Soc. Am. J., 42(6), p.940-944. 

  220. Shaaban, M. Peng, Q. Bashir, S. Wu, Y. Younas, A. Xu, X., Rashti, M.R., Abid, M., Zafar-ul-Hye, M. Nunez-Delgado, A., Horwath, W.R., Jiang, Y., Lin, S. and Hu, R. (2019) Restoring effect of soil acidity and Cu on $N_2O$ emissions from an acidic soil. J. Environ. Manage., v.250(15), 109535p. 

  221. Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A. and Haszeldine, S. (2012) Sustainable gasification-biochar systems? a case-study of rice-husk gasification in Cambodia, part I: context, chemical properties, environmental and health and safety issues, Energy Policy, v.42, p.49-58. 

  222. Shao, Y. C., Zhang, Y. L., Li, Y., Yan, Y. D. and An, Y. C. (2005) Study of effect on using natural minerals to improve soil in irrigating brackish water. J. Soil Water Conserv., v.19, p.100-103 (In Chinese). 

  223. Sharma, B., Sarkar, A., Singh P. and Singh R. P. (2017) Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage., v.64, p.117-132. 

  224. She, W. W., Bai, Y. X., Zhang, Y. Q., Qin, S. G., Feng, W., Sun, Y. F., Zheng, J. and Wu, B. (2018) Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Front. Microbiol., v.9, 186p. 

  225. Shi, Y., Chen, X. and Shen, S. M. (2002) Mechanisms of organic cementing soil aggregate formation and its theoretical models. Chin. J. Appl. Ecol., v.13, p.1495-1498 (In Chinese). 

  226. Shi, Z., Tang, Z. and Wang, C. (2019) Effect of phenanthrene on the physicochemical properties of earthworm casts in soil. Ecotox. Environ. Saf., v.168, p.348-355. 

  227. Shin, D., Jo, Y. T., Park, S. J. and Park, J. H. (2019) Acidic Soil Improvement and Physicochemical Characteristics Using Red-mud and Biochar. J. Korean Soc. Environ. Eng., v.41(9), p.483-493. 

  228. Sierra, M. J., Milla, N, R., Lopez, F.A., Alguacil, F. J. and Canadas, I. (2016) Sustainable remediation of mercury contaminated soils by thermal desorption. Environ. Sci. Pollut. Res. int., v.23(5), p.4898-4907. 

  229. Singh, R. P. and Agrawal, M. (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, v.67, p.2229-2240. 

  230. Singh, R. P. and Agrawal, M. (2008) Potential benefits and risks of land application of sewage sludge. Waste Manage., v.28, p.347-358. 

  231. Singh, R. P. and Agrawal, M. (2010a) Biochemical and physiological responses of Rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bull, Environ. Contam. Toxcol., v.23, p.606-612. 

  232. Singh, R. P. and Agrawal, M. (2010b) Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng., v.36, p.969-972. 

  233. Singh, R. P., Sharma, B., Sarkar, A., Sengupta, C., Singh, P. and Ibrahim, M. H. (2014) Biological responses of agricultural soils to fly ash amendments. Rev. Environ. Contam. Toxicol., v.232, p.45-60. 

  234. Singh, S., Singh, J. and Vig, A. P. (2016) Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecol. Eng., v.90, p.1-5. 

  235. Sizmur, T., Palumbo-Roe, B. and Hodson, M. E. (2011) Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environ. Pollut., v.159, p.1852-1860. 

  236. Slater, L. and Lesmes, D. (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour. Res., v.38(10), p.31-1-31-13. 

  237. Sneath, H. E., Hutchings, T. R. and de Leij, F. A. (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene cocontaminated spoil. Environ. Pollut., v.178, p.361-366. 

  238. Snyder, B. A. and Hendrix, P. F. (2008) Current and potential roles of soil macroinvertebrates (earthworms, Millipedes, and Isopods) in Ecological Restoration. Restor. Ecol., v.16(4), p.629-636. 

  239. Somerville, P. D., May, P. B. and Livesley, S. J. (2018) Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils, J. Environ. Manage., v.227, p.365-374. 

  240. Srivastava, N. K. and Ram, L. C. (2009) Bio-restoration of coal mine spoil with fly ash and biological amendments. In: O. P. Chaubey, Bahadur, Vijay, P. K. Shukla(Eds.), Sustainable Rehabilitation of Degraded Ecosystems, Avishkar Publishers, p.77-91. 

  241. Srivastava, N. K., Ram, L. C. and Masto, R. E. (2014) Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: a sustainable ecological approach. Ecol. Eng., v.71, p.479-489. 

  242. Stoicescu, J., Haug, M. amd Fredlund, D. (1996) Soil water characteristics and pore size distribution of a sand-bentonite mixture. In: Proc. 49th Canadian Geotechnical Conference. St. John'S Newfoundland, September, p.23-25. 

  243. Sun, Y., He, Z., Wu, Q., Zheng, J., Li, Y., Wang, Y,. Chen, T. and Chi, D. (2020) Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agricultural Water Management, v.235(31) 106126p. 

  244. Suzuki, S., Noble, A. D., Ruaysoongnern, S. and Chinabut, N. (2007) Improvement in waterholding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Res. Manag., v.21(1), p.37-49. 

  245. Tahir, S. and Marschner, P. (2016) Clay amendment to sandy soil effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments, v.16, p.2072-2080. 

  246. Talaat, N. B. and Shawky, B. T. (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot., v.98, p.20-31. 

  247. Tejada, M., Garcia, C., Gonzalez, J. L. and Hernandez, M. T. (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem., v.38, p.1413-1421. 

  248. Tejada, M., Moreno, J. L., Hernandez, M. T. and Garcia, C. (2007) Application of two beet vinasse forms on soil restoration: effects on soil properties in an arid environment in southern Spain. Agric. Ecosyst. Environ., v.119, p.289-298. 

  249. Terefe, T., Mariscal-Sancho, I., Peregrina, F. and Espejo, R. (2008) Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma, v.143(3-4), p.273-280. 

  250. Tersic, T. and Gosar, M. (2012) Comparison of elemental contents in earthworm cast and soil from a mercurycontaminated site (Idrija area, Slovenia). Sci. Total Environ., v.430, p.28-33. 

  251. Thomaz, E. L. and Fachin, P. A. (2014) Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma, v.230-231, p.243-249. 

  252. TIFAC (2001) Technology linked business opportunity publications. Non Conventional Sources of Plant Nutrient & Soil Conditioners to Enhance Agricultural Productivity, Code no. TMS1551. 

  253. Tirado-Corbala, R., Slater, B. K., Dick, W. A., Bigham, J. and Munoz-Munoz, M. (2019) Gypsum amendment effects on micromorphology and aggregation in no-till Mollisols and Alfisols from western Ohio, USA. Geoderma Regional, v.16, p.e00217. 

  254. Tripathi, R. C., Masto, R. E. and Ram, L. C. (2009) Bulk use of pond ash for cultivation of wheat maize eggplant crops in sequence on a fallow land Resources. Conserv. Rec., v.54, p.134-139. 

  255. Un, H., Han, M., Seo, K. and Seo, M. (2012) Microbial fertilizer for soil improvement using bottom ash carrier, Korean patent, 10-2012-0009080. 

  256. United States Environmental Protection Agency (US EPA) (2007) Report on the Environment: Science Report. 

  257. USEPA (2013) Literature Review of Contaminants in Livestock and Poultry Manure andImplications for Water Quality. 

  258. Usman, K., Khan, S. Ghulam, S., Khan, M. U., Khan, N., Khan, M. A. and Khalil, S. K. (2012) Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci., v.3, p.1708-1721. 

  259. Veeresh, H., Tripathy, S., Chaudhuri, D., Ghosh, B. C., Hart, B. and Powell, M. (2003) Changes in physical and chemical properties of three soil types in India as a result of amendment with fly ash and sewage sludge. Environ. Geol., v.43, p.513- 520. 

  260. Villa, R. D., Trovo, A. G. and Nogueira, R. F. P. (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J. Hazard. Mater., v.174(1-3), p.770-775. 

  261. Vo, T. D. H., Bui, X. T., Lin, C., Nguyen, V. T., Hoang, T. K. D.Nguyen, H. H., Nguyen, P. D., Ngo, H. H. and Guo, W. (2019) A mini-review on shallow-bed constructed wetlands: a promising innovative green roof. Curr. Opin. Environ. Sci. Health, v.12, p.38-47. 

  262. Vondrackova, S., Hejcman, M., Tlustos, P. and Szakova, J. (2013) Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated Soils. Pol. J. Environ. Stud., v.22, p.577-589. 

  263. Walker, R. F. (2003) Comparison of organic and chemical soil amendments used in the reforestation of a harsh Sierra Nevada site. Rest. Ecol., v.11, p.446-474. 

  264. Wang, G. Y., Zhang, S. R., Xu, X. X., Zhong, Q. M., Zhang, C. E., Jia, Y. X., Li, T., Deng, O. P. and Li, Y. (2016b) Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ., v.569-570, p.557-568. 

  265. Wang, G., Zhang, S., Zhong, Q., Xu, X., Li, T., Jia, Y,, Zhang, Y., Peijnenburg, W. J. G. M. and Vijver, M. G. (2018) Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ., v.625, p.1021-1029. 

  266. Wang, H., Feng, L. and Chen, Y. (2012) Advances in biochar production from wastes and its applications. Chem. Ind. Eng. Prog., v.63, p.3727-3740. 

  267. Wang, S. Y., Kuo, Y. C., Hong, A., Chang, Y. M. and Kao, C. M. (2016a) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemospher, v.164, p.558-567. 

  268. Wardle, D. A. (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components, 34, Princeton University Press. 

  269. Welp, G. (1999) Inhibitory effects of the total and watersoluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol. Ferti. Soils, v.30(1-2), p.132-139. 

  270. Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. and Vangreonsveld, J. (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenerg., v.39, p.454-469. 

  271. Xie, T., Li, Y., Dong, H., Liu, Y., Wang, M. and Wang, G. (2019) Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment, Ecotox. Environ. Saf., v.173(30) p.266-272. 

  272. Xu, J. and Shen, G. (2011) Growing duckweed in swine wastewater for nutrient recovery and biomass production, Bioresour. Technol., v.102(2), p.848-853. 

  273. Yang, H., Kim, D., Ahn, B.W. and Lee, J. (2014) Impacts of Green Manure Crop and Charcoal Applications on Ginger Growth and Soil Properties, Korean J Organic Aagi., v.22(3) p.503-519. 

  274. Yang, J. E. (2003) Development of liquid bio-fertilizer production technology for soil amendment, R&D Program for Small and Medium-sized Enterprises. 

  275. Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A. R. (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, v.89, p.1467-1471. 

  276. Yi, Q., Zhao, Y., Huang, Y., Wei, G., Hao, Y., Feng, J., Mohamed, U., Pourkashanian, M., Nimmo, W. and Li, W. (2018) Life cycle energy-economic $CO_2$ emissions evaluation of biomass/coal, with and without $CO_2$ capture and storage, in a pulverized fuel combustion power plant in the United Kingdom. Appl. Energy, v.225, p.258-272. 

  277. Yi, Y. M. (2016) Quality and health assessment of contaminated soil after remediation and amendment treatment. Ph. D. thesis, Yukyong National University. 

  278. Yi, Y. M. and Sung, K. J. (2015) Influence of washing treatment on the qualities of heavy metalcontaminated soil. Ecol. Eng., v.81, p.89-92. 

  279. Yi, Y. M., Oh, C. T., Kim, G. J., Lee, C. H. and Sung, K. J. (2012) Changes in the physicochemical properties of soil according to soil remediation methods. J. Soil Groundw. Environ., 17(4), 36-43 

  280. Yi, Y. M., Park, S. Y., Munster, C., Kim, G. J. and Sung K. J. (2016) Changes in ecological properties of petroleum oil-contaminated soil after lowtemperature thermal desorption treatment. Water Air Soil Pollut., v.227(4), p.1-10 

  281. Yoo, J. C., Beiyuan, J. Z., Wang, L., Tsang, D. C. W., Baek, K., Bolan, N.S ., Ok, Y. S. and Li, X. D. (2018) A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Sci. Total Environ., v.616-617, p.572-582. 

  282. Yu, H., Xiao, H. and Wang, D. (2014) Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res., v.3(1), p.1-11. 

  283. Yuan, P., Shen, B., Duan, D., Adwek, G., Mei, X. and Lu, F. (2017) Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process. Energy, v.141, p.472-482.. 

  284. Yuan, P., Wang, J., Pan, Y., Shen, B. and Wu, C. (2019) Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ., v.659, p.473-490. 

  285. Yun, S., Jin, H., Kang, S., Choi, S., Lim, Y. and Yu, C. (2010) A Comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. J. Korean Geotech. Soc., v.26(7), p.59-70. 

  286. Yun, S. J. (2010) World Trend and Prospect of Environmental Restoration Industry. Gloval Green Growrh Policy, v.24, p.1-16. 

  287. Zayani, K., Bousnina, H., Mhiri, A., Hartmann, R. and Cherif, H. (1996) Evaporation in layered soils under different rates of clay amendment. Agric. Water Manage., v.30, p.143-154. 

  288. Zdruli, P., Jones, R. J. A. and Montanarella, L. (2004) Organic Matter in the Soils of Southern Europe. In: European Soil Bureau Technical Report. EUR 21083 EN, Office for Official Publications of the European Communities. Luxembourg, 16p. 

  289. Zeb, A., Li, S., Wu, J., Lian, J., Liu, W. and Sun, Y. (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Sci. Total Environ., v.740(20), 140145p. 

  290. Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q. and Zeng, G. (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ., 635, 92-99. 

  291. Zhang, H. M., Xu, M. G. and Zhang, F. (2009) Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. J. Agricult. Sci., v.147, p.31-42. 

  292. Zhang, K., Chen, L., Li, Y., Brookes, P. C., Xu, J. and Luo, Y. (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils, v.53(1), p.77-87. 

  293. Zhang, Q., Zhou, W., Liang, G., Wang, X. Sun, J. and He, P. (2015) Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS One, v.10(4), e0124096p. 

  294. Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G. and Jiang, G. (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One, v.9(10), e108555p.. 

  295. Zhu, H., Yang, J., Yao, R., Wang, X., Xie, W., Zhu, W., Liu, X., Cao, Y. and Tao, J. (2020) Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. Catena, v.190, p.104527. 

  296. Zhu, J. C., Zhang, Z. Q., Fan, Z. M. and Li, H. R. (2014) Biogas potential, cropland load and total amount control of animal manure in China. J. Agrometeorol., v.33, p.435-445. 

  297. Zihms, S. G., Switzer, C., Irvine, J. and Karstunen, M. (2013) Effects of high temperature processes on physical properties of silica sand, Eng. Geol., 164, 139-145. 

  298. Zoca, S. M. and Penn, C. (2017) An important tool with no instruction manual: a review of gypsum use in agriculture. Adv. Agron., v.144, p.1-44. 

  299. Zupanc, V., Kastelec, D., Lestan, D. and Grcman, H. (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ. Pollu., v.186, p.56-62. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로