$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.52 no.9, 2020년, pp.2054 - 2063  

Kim, Jae Joon (Department of Nuclear and Quantum Engineering, KAIST) ,  Kim, Hyun Gil (ATF Technology Development Division, KAERI) ,  Ryu, Ho Jin (Department of Nuclear and Quantum Engineering, KAIST)

Abstract AI-Helper 아이콘AI-Helper

The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at...

주제어

참고문헌 (30)

  1. H.H. Kim, J.H. Kim, J.Y. Moon, H.S. Lee, J.J. Kim, Y.S. Chai, High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient, J. Mater. Sci. Technol. 26 (2010) 827-832. 

  2. P.M. Kelly, C.J. Wauchope, The tetragonal to monoclinic martensitic transformation in zirconia, Key Eng. Mater. (1998). https://doi.org/10.4028/www.scientific.net/kem.153-154.97. 

  3. J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview, Dent. Mater. (2008), https://doi.org/10.1016/j.dental.2007.05.005. 

  4. J.M. Kim, T.H. Ha, I.H. Kim, H.G. Kim, Microstructure and oxidation behavior of CrAl laser-coated Zircaloy-4 alloy, Metals (2017), https://doi.org/10.3390/met7020059. 

  5. X. Han, Y. Wang, S. Peng, H. Zhang, Oxidation behavior of FeCrAl coated Zry-4 under high temperature steam environment, Corrosion Sci. (2019), https://doi.org/10.1016/j.corsci.2019.01.004. 

  6. J.H. Park, H.G. Kim, J. yong Park, Y. Il Jung, D.J. Park, Y.H. Koo, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coating. Technol. (2015), https://doi.org/10.1016/j.surfcoat.2015.09.022. 

  7. H.-G. Kim, I.-H. Kim, J.-Y. Park, Y.-H. Koo, Application of coating technology on zirconium-based alloy to decrease high-temperature oxidation, in: Zircon. Nucl. Ind 17th, 2015, https://doi.org/10.1520/stp154320120161. 

  8. H.G. Kim, I.H. Kim, Y. Il Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. (2015), https://doi.org/10.1016/j.jnucmat.2015.06.030. 

  9. K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, J. Nucl. Mater. (2013), https://doi.org/10.1016/j.jnucmat.2013.03.006. 

  10. B. Cheng, Y.J. Kim, P. Chou, Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding, Nucl. Eng. Technol. (2016), https://doi.org/10.1016/j.net.2015.12.003. 

  11. I. Idarraga-Trujillo, M. Le Flem, J.C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRS with increased margins in loca and beyond loca conditions, in: LWR Fuel Perform. Meet. Top Fuel, 2013, 2013. 

  12. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors, JOM (2018), https://doi.org/10.1007/s11837-017-2643-9. 

  13. M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, K. Shirvan, Development of Cr cold sprayecoated fuel cladding with enhanced accident tolerance, Nucl. Eng. Technol. (2018), https://doi.org/10.1016/j.net.2017.12.011. 

  14. S. Knittel, S. Mathieu, M. Vilasi, The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to $1400^{\circ}C$ , Intermetallics (2011), https://doi.org/10.1016/j.intermet.2011.03.029. 

  15. C.G. McKamey, P.F. Tortorelli, J.H. DeVan, C.A. Carmichael, A study of pest oxidation in polycrystalline MoSi2, J. Mater. Res. (1992), https://doi.org/10.1557/JMR.1992.2747. 

  16. S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel, M. Schutze, Oxidation of the intermetallics MoSi2 and TiSi2 - a comparison, Oxid. Metals (1997), https://doi.org/10.1007/BF01682375. 

  17. T. Sandwick, K. Rajan, The oxidation of titanium silicide, J. Electron. Mater. (1990), https://doi.org/10.1007/BF02673332. 

  18. R. Rosenkranz, G. Frommeyer, Microstructures and properties of the refractory compounds TiSi2 and ZrSi2, zeitschrift fuer met, Res. Adv. Tech. (1992). 

  19. H. Gesswein, A. Pfrengle, J.R. Binder, J. Hausselt, Kinetic model of the oxidation of ZrSi2 powders, J. Therm. Anal. Calorim. (2008), https://doi.org/10.1007/s10973-007-8461-5. 

  20. H. Yeom, B. Maier, R. Mariani, D. Bai, K. Sridharan, Evolution of multilayered scale structures during high temperature oxidation of ZrSi2, J. Mater. Res. (2016), https://doi.org/10.1557/jmr.2016.363. 

  21. H. Yeom, High Temperature Corrosion and Heat Transfer Studies of Zirconium-Silicide Coatings for Light Water Reactor Cladding, The University of Wisconsin, Madison, 2017. http://search.proquest.com.ezproxy.library.wisc.edu/docview/1952167476?accountid465. 

  22. W.J. Strydom, J.C. Lombaard, R. Pretorius, Thermal oxidation of the silicides CoSi2, CrSi2, NiSi2, PtSi, TiSi2 and ZrSi2, Thin Solid Films (1985), https://doi.org/10.1016/0040-6090(85)90142-7. 

  23. R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem. (1965), https://doi.org/10.1021/j100888a024. 

  24. C.E. Curtis, H.G. Sowman, Investigation of the thermal dissociation, reassociation, and synthesis of zircon, J. Am. Ceram. Soc. (1953), https://doi.org/10.1111/j.1151-2916.1953.tb12865.x. 

  25. K. Kurokaw, A. Yamauchi, Classification of oxidation behavior of disilicides, in: Solid State Phenom, 2007. https://doi.org/10.4028/www.scientific.net/SSP.127.227. 

  26. S.K. Saxena, N. Chatterjee, Y. Fei, G. Shen, Thermodynamic data on oxides and silicates. https://doi.org/10.1007/978-3-642-78332-6, 1993. 

  27. O. Kubaschewski, THERMODYNAMIC PROPERTIES OF DOUBLE OXIDES, High Temp. High Press, 1972. 

  28. J. Rodriguez-Viejo, F. Sibieude, M.T. Clavaguera-Mora, C. Monty, 18O diffusion through amorphous SiO2 and cristobalite, Appl. Phys. Lett. (1993), https://doi.org/10.1063/1.110644. 

  29. S. Roy, A. Paul, Growth of hafnium and zirconium silicides by reactive diffusion, Mater. Chem. Phys. (2014), https://doi.org/10.1016/j.matchemphys.2013.11.039. 

  30. B. Oberlander, P. Kofstad, I. Kvernes, On Oxygen Diffusion in tetragonal zirconia, Mater. Werkst. (1988), https://doi.org/10.1002/mawe.19880190604. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로