$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant 원문보기

목재공학 = Journal of the Korean wood science and technology, v.48 no.5, 2020년, pp.651 - 665  

FATRIASARI, Widya (Research Center for Biomaterials LIPI) ,  NURHAMZAH, Fajar (Diploma Program for Chemical Analysis, Bogor Agricultural University) ,  RANIYA, Rika (Department of Environmental Health, Faculty of Public Health, University of Indonesia) ,  LAKSANA, R.Permana Budi (Research Center for Biomaterials LIPI) ,  ANITA, Sita Heris (Research Center for Biomaterials LIPI) ,  ISWANTO, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara) ,  HERMIATI, Euis (Research Center for Biomaterials LIPI)

Abstract AI-Helper 아이콘AI-Helper

Hydrolysis of biomass for the production of fermentable sugar can be improved by the addition of surfactants. In pulp and paper mills, lignin, which is a by-product of the pulping process, can be utilized as a fine chemical. In the hydrolysis process, lignin is one of the major inhibitors of the enz...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In attempt to propose effective utilization as bioenergy of waste biomass i.e. ST, OPEFB and SSB, this study was conducted by evaluating the performance of pre-treated substrate for enzymatic hydrolysis with variation of their lignin content by addition of lignin based biosurfactant. Table 1 presents the comparison of chemical component of OPEFB, ST and SSB kraft pulp.

이론/모형

  • , 2020) of the synthesis condition in A-LD reaction has been conducted. The optimized A-LD was used in this study. The effect of A-LD derived from A mangium on enzymatic hydrolysis has not observed for other biomass with varies of lignin content.
본문요약 정보가 도움이 되었나요?

참고문헌 (72)

  1. Abdeli, F., Rigane, G., Salem, B., El Arbi., Aifa, S., Cherif, S. 2019. Use of surfactants and biosurfactants in oil recovery processing and cellulose hydrolysis. Journal of Bacteriology and Mycology 6(5): 1-4. 

  2. Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S.K., Hodge, D.B., Nejad, M. 2019. Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11(7): 1-21. 

  3. Anita, S.H., Fitria., Solihat, N.N., Sari, F.P., Risanto, L., Fatriasari, W., Hermiati, E. 2020. Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization 11(6): 2673-2687. 

  4. Arnieyanto, D.R. 2018. Praperlakuan pemanasan gelombang mikto dan asam untuk peningkatan hidrolisis selulosa daun tebu (Saccharum officinarum) oleh selulase. Tesis Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pakuan (In Indonesia). 

  5. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., Saddler, J. 2006. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125(2): 198-209. 

  6. Bin, Y., Chen, H. 2010. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technology 101(3): 9114-9119. 

  7. Cheng, N., Yamamoto, Y., Koda, K., Tamai, Y., Uraki, Y. 2014. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresource Technology 173: 104-109. 

  8. Cheng, N., Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T.E., Uraki, Y. 2017. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresource Technology 232: 126-132. 

  9. Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G. 2012. Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39: 218-226. 

  10. Daorattanachai, P., Viriya-empikul, N., Laosiripoiana, N., Faungnawakij, K. 2013. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water. Bioresource Technology 144: 504-512. 

  11. Elgharbawy, A.A., Alam, M.Z., Moniruzzaman, M., Goto, M. 2016. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal 109: 252-267. 

  12. Eriksson, T., Borjesson, J., Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology 31(3): 353-364. 

  13. Fajriutami, T., Fatriasari, W., Hermiati, E. 2016. Effects of Alkaline pretreatment of sugarcane bagasse on pulp characterization and reducing sugar production. Jurnal Riset Industri 10(3): 147-161 (In Indonesia). 

  14. Fatriasari, W., Supriyanto, Iswanto, A.H. 2015. The kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences 47(2): 149-159. 

  15. Fatriasari, W., Raniya, R., Anita, S.H., Hermiati, E. 2016. Conversion of oil palm empty fruit bunches (OPEFB) for bioethanol produce through microwave assisted organic acid pretreatment. Biorefinery Project Report (unpublished work). 

  16. Fatriasari, W., Anita, S. H., Risanto, L. 2017. Microwave assisted acid pretreatment of oil palm empty fruit bunches (EFB) to enhance its fermentable sugar production. Waste and Biomass Valorization 8: 79-91. 

  17. Fatriasari, W., Adi, D.T.N., Laksana, R.P.B., Fajriutami, T., Raniya, R., Ghozali, M., Hermiati, E. 2018. The effect of amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. IOP Conf. Series: Earth and Environmental Science 141(012005): 1-7. 

  18. Fatriasari, W., Hamzah, F.N., Pratomo, B.I., Fajriutami, T., Ermawar, R.A., Falah, F., Laksana, R.P.B., Ghozali, M., Iswanto, A.H., Hermiati, E., Winarni, I. 2020. Optimizing the synthesis of lignin derivatives from acacia mangium to improve the enzymatic hydrolysis of kraft pulp sorghum bagasse. International Journal of Renewable Energy Development 9(2): 227-235. 

  19. Fengel, D., Wegener, G. 1989. Chemistry, Ultrastructure, Reaction, Walter de Gruyter, Berlin. 

  20. Focher, B., Palma, M.T., Canetti, M., Torri, G., Cosentino, C., Gastaldi, G. 2001. Structural differences between non-wood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13(3): 193-208. 

  21. Fortunati, E., Luzi, F., Puglia, D., Torre, L. 2016. Chapter 1 - Extraction of Lignocellulosic Materials from Waste Products Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, pp. 1-38. 

  22. Goh, C.S., Tan, H.T., Lee, K.T. 2012. Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology 110: 662-669. 

  23. Gomez, E.O., de Souza, R.T.G., de Moraes, R.G.J., de Almeida, E., Cortez, L.A.B. 2014. Sugarcane trash as feedstock for second generation processes. In: Cortez LAB (ed) Sugarcane bioethanol-R&D for Productivity and Sustainability, Editora Edgard Blucher, Sao Paulo, pp. 637-660. 

  24. Goshadrou, A., Karimi, K., Taherzadeh, M.J. 2011. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Industrial Crops and Products 34(1): 1219-1225. 

  25. Han, S-Y., Park, C-W., Kwon, G-J., Kim, J-H.,Kim, N-H., Lee, S-H. 2020. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413. 

  26. Helle, S.S., Duff, S.J.B, Cooper, D.G. 1993. Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering 42(5): 611-617. 

  27. Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1): 10-18. 

  28. Hermiati, E., Oktaviani, M., Ermawar, R.A., Laksana, RPB, Kholida, LN, Thantowi, A., Mardiana, S.M., Watanabe, T. 2020. Optimization of xylose production from sugarcane trash by microwave- maleic acid hydrolysis. Reaktor 20(2): 81-88. 

  29. Iswanto, A.H., Aritonang, W., Azhar, I, Supriyanto, Fatriasari, W. 2017. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. Journal of the Indian Academy of Wood Science 14: 1-8. 

  30. Jonsson, L.J., Alriksson, B., Nilvebrant, N.O. 2013. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels 6(16): 2-10. 

  31. Jutakanoke, R., Tolieng, V., Tanasupawat, S., Akaracharanya, A. 2017. Ethanol production from sugarcane leaves by Kluyveromyces marxianus S1.17, a genome-shuffling mediated transformant. BioResources. 12(1): 1636-1646. 

  32. Kaar, W.E., Holtzapple, M.T. 1998. Benefits from tween during enzymic hydrolysis of corn stover. Biotechnology and Bioengineering 59(4): 419-427. 

  33. Kim, M.H., Lee, S.B., Ryu, D.D.Y., Reese, E.T. 1982. Surface deactivation of cellulase and its prevention. Enzyme and Microbial Technology 4(2): 99-103. 

  34. Kumar, D.S., Marimuthu, P. 2012. Sweet sorghum stalks-an alternate agro based raw material for paper making. IPPTA Journal 24(3): 47-50. 

  35. Lai, C., Tu, M., Shi, Z., Zheng, K., Olmos, L.G., Yu. 2014. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresource Technology 163: 320-327. 

  36. Lee, J-W., Rodrigues, R.C.L.B., Kim, H.J., Choi, I-G., Jeffries, T.W. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101(12): 4379-4385. 

  37. Li, Y., Sun, Z., Ge, X., Zhang, J. 2016. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels 9(20): 1-9. 

  38. Li, X., Li, M., Pu, Y., Ragauskas, A.J., Klett, A.S., Thies, M., Zheng, Y. 2018. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy 123: 664-674. 

  39. Loow, Y.-L., Wu, T.Y., Md. Jahim, J., Mohammad, A.W., Teoh, W.H. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3): 1491-1520. 

  40. Lukmandaru, G. 2016. Correlation between extractive content and colour properties in teak heartwood. Jurnal Penelitian Hasil Hutan 34(3): 207-216. 

  41. Malmsten, M., Van Alstine, J.M. 1996. Adsorption of poly (ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. Journal of Colloid and Interface Science 177(2): 502-512. 

  42. Merklein, K., Fong, S.S., Deng, Y. 2016. Chapter 11. Biomass utilization in biotechnology for biofuel production and optimization. Biotechnology for Biofuel Production and Optimization, pp. 291-324. 

  43. Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar Analitical Chemistry 31(3): 426-428. 

  44. Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. 

  45. Monrroy, M., Garcia, J.R., Mendonca, R.T., Baeza, J., Freer, J., Chil, J. 2012. Kraft pulping of Eucalyptus globulus as a pretreatment for bioethanol production by simultaneous saccharification and fermentation. Journal of the Chilean Chemical Society 57(2): 1113-1117. 

  46. Moodley, P., Kana, E.B.G. 2015. Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. International Journal of Hydrogen Energy 40(10): 3859-3867. 

  47. Mussatto, S.I., Fernandes, M., George, J.M.R., Jose, J.M.O., Jose, A.T., Roberto, I.C. 2010. Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology 101(7): 2450-2457. 

  48. Nababan, M.Y.S., Fatriasari, W., Wistara, N.J. 2020. Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00807-w 

  49. Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011. The isolation, characterization and effect of lignin isolated from steam pretreated douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology 102(6): 4507-4517. 

  50. Oktaviani, M., Hermiati, E, Thontowi, A., Laksana, R.P.B., Kholida, L.N., Adriani, A, Yopi, W., Mangunwardoyo, W. 2019. Production of xylose, glucose, and other products from tropical lignocellulose biomass by using maleic acid pretreatment. IOP Conference Series: Earth Environmental. Science 251(012013): 1-9. 

  51. Pareek, N., Gillgren, T., Jonsson, L.J. 2013. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology 148: 70-77. 

  52. Patil, J.V., Chari, A., Rao, SV., Mathur, R.M., Vimelesh, B., Lal, P.S. 2011. High Bio-Mass Sorghum (Sorghum bicolor): An alternate raw material for pulp and paper making in India. IPPTA Journal 23(2): 161-165. 

  53. Punyamurthy, R., Sampath, K.D, Bennehalli, B., Srinivasa, C.V. 2013. Influence of esterification on the water absorption property of single abaca fiber. Chemical Science Transaction 2(2): 413-422. 

  54. Qing, Q., Yang, B., Wyman, C.E. 2010. Impact of surfactants on pretreatment of corn stover. Bioresource Technology 101(15): 5941-5951. 

  55. Rahikainen, J.L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O.J., Kruus, K. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 113: 270-278. 

  56. Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A. 2005. Chapter 3: Cell Wall Chemistry in Handbook Wood Chemistry and Wood Composites, 1st ed., CRC Press, pp. 71-72. 

  57. Sills, D.L., Gossett, J.M. 2011. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresource Technology 102(2): 1389-1398. 

  58. Singh, D.P., Trivedi, R.K. 2013. Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research. 5(2): 727-734. 

  59. Sjostrom, E. 1998. Wood Chemistry. Fundamentals and Applications. Gadjah Mada University Press. Yogyakarta. 

  60. Sjostrom, E. 1981. Wood Chemistry: Fundamentals and Applications, 2nd ed., Academic Press, San Diego, USA. 

  61. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2012. Determination of Structural Carbohydrates and Lignin in Biomass Technical Report NREL/TP-510-42618. 

  62. Solihat, N.N., Fajriutami, T., Adi, D.T.N., Fatriasari, W., Hermiati, E. 2017. Reducing sugar production of sweet sorghum bagasse kraft pulp. AIP Conference Proceeding. 1803: 020012-1 - 020012-8. 

  63. Uraki, Y., Ishikawa, N., Nishida, M., Sano, Y. 2001. Preparation of amphiphilic lignin derivative as a cellulase stabilizer. Journal of Wood Science 47(4): 301-307. 

  64. Wang, W., Zhuang, X., Yuan, Z., Yu, Q., Qi, W., Wang, Q., Tan, X. 2012. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology 108: 252-257. 

  65. Wang, W., Wang, C., Zahoor, Chen, X., Yu, Q., Wang, Z., Zhuang, X., Yuan, Z. 2020. Effect of a nonionic surfactant on enzymatic hydrolysis of lignocellulose based on lignocellulosic features and enzyme adsorption. ACS Omega 5(26): 15812-15820. 

  66. Winarni, I., Koda K., Waluyo, T.K., Pari, G., Uraki, Y. 2014. Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipathic derivatives Journal of Wood Chemistry and Technology 34(3): 157-168. 

  67. Winarni, I., Oikawa, C., Yamada, T., Igarashi, K., Koda, K.,Uraki, Y. 2013. Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. Bioresources 8(2): 2195-2208. 

  68. Wise, L.E., Murphy, M., Addieco, A.A. 1946. Chlorite holocellulose, Its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Paper Trade Journal 122(2): 35-43. 

  69. Wright, R.T., Wiyono, E. 2013. USDA Foreign Agricultural Service: Indonesia oilseeds and products update. (http://gain.fas.usda.gov/Recent GAIN Pub lications/ Oilseeds and Products Update_Jakarta_Indonesia_5-4-20), Accessed 27 Apr. 2017. 

  70. Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. 2010. Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels 24(3): 2113-2119. 

  71. Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F., Kim, N.H. 2019. Effect of biological and liquid hot water pretreatments on ethanol yield from Mengkuang (Pandanus artocarpus Griff). Journal of the Korean Wood Science and Technology 47(2): 145-162. 

  72. Zong, Z., Ma, L., Yu, L., Zhang, D., Yang, Z., Chen, S. 2015. Characterization of the interactions between polyethylene glycol and cellulase during the hydrolysis of lignocellulose. BioEnergy Research 8(1): 270-278. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로