$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

콩 조직배양 기술에 기반한 생명공학 연구 동향
Status of Molecular Biotechnology Research Based on Tissue Culture of Soybean 원문보기

韓國資源植物學會誌 = Korean journal of plant resources, v.33 no.5, 2020년, pp.536 - 549  

서미숙 (국립식량과학원 작물기초기반과) ,  조철오 (국립식량과학원 작물기초기반과) ,  최만수 (국립식량과학원 작물기초기반과) ,  전재범 (국립식량과학원 작물기초기반과) ,  진민아 (국립식량과학원 작물기초기반과) ,  김둘이 (국립식량과학원 작물기초기반과)

초록
AI-Helper 아이콘AI-Helper

콩은 전세계적으로 재배되는 중요한 작물 중에 하나로 최근, 표준유전체 해독과 함께 유전적, 표현형적으로 다양성을 가진 한국핵심집단이 구축됨에 따라 유전체 기반 분자 육종 연구, 유전자 교정 기술을 활용한 새로운 육종 소재 개발 연구가 가속화될 것으로 예상된다. 유전체 정보 기반 작물의 분자 육종 및 생명공학 연구를 통한 성공적인 작물의 개량을 위해서는 식물의 효율적인 조직배양 기술이 수반되어야 할 것이다. 그러나 반수체 생산, 원형질체 배양 및 형질전환 기술과 같은 콩의 조직배양 효율은 아직까지 높지 않고 일부 계통에 한정되어 이루어지고 있다. 본 논문에서는 콩의 분자육종 및 생명공학 기술의 적용을 위하여 다양한 콩 조직배양 기술에 관한 연구 동향을 분석하고 조직배양 효율에 영향을 미치는 요인들에 대한 정보를 제공하고자 하였다.

Abstract AI-Helper 아이콘AI-Helper

Soybean (Glycine max (L.) Merrill) is one of the most important crops of the world. With the completion of the soybean genome sequence, the Korean soybean core collection consisted of 430 accessions with genetic and phenotypic diversity was constructed in recent year. The availability of genome sequ...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러나 반수체 생산, 원형질체 배양 및 형질전환 기술과 같은 콩의 조직배양 효율은 아직까지 높지 않고 일부 계통에 한정되어 이루어지고 있다. 본 논문에서는 콩의 분자육종 및 생명공학 기술의 적용을 위하여 다양한 콩 조직배양 기술에 관한 연구 동향을 분석하고 조직배양 효율에 영향을 미치는 요인들에 대한 정보를 제공하고자 하였다.
  • 본 논문에서는 콩의 유전체 기반 분자육종 연구 및 유전자교정을 비롯하여 형질전환 기술을 이용한 새로운 육종 소재 개발에 선결조건이라고 할 수 있는 콩의 조직배양 연구 현황과 조직배양 효율에 영향을 미치는 요인들에 대하여 서술하고자 한다.
  • 이와 더불어, 조직배양을 통한 목적 유전자의 형질전환 기술도 일부 계통에 한정적이고, 형질전환 효율 또한 높지 않은 실정이다. 본 논문에서는 현재까지 콩에서 시도된 다양한 기내 조직배양 및 형질전환 연구의 현황을 분석함으로써 향후 농업적 가치가 높은 콩 품종을 이용한 조직배양 기술의 적용을 위한 정보를 제공하고자 하였다. 이러한 연구 결과를 바탕으로 효율적인 콩 조직배양 시스템이 구축된다면 향후 유전체 육종 및 GE기술을 적용한 콩의 새로운 육종 소재 개발을 통한 가치창출에 기여할 수 있을 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Particle bombardment법을 이용한 형질전환 연구는 어떤 문제점이 있는가? 특히 Jack 품종의 미성숙 자엽을 이용하여 제초제 및 병 저항성, 그리고 기능성 물질함량 관련 유전자 등 다양한 유전자가 도입된 형질전환 식물체가 생산되었다(Table 5). 그러나, particle bombardment를 이용한 형질전환에는 미성숙 자엽의 채취를 위한 재료의 유지에 많은 인력과 시간, 형질전환을 위한 고가의 장비 및 유지 비용이 소요될뿐만 아니라 물리적 방법에 의해 목적 유전자를 도입하는 과정에서 식물 세포의 손상, 유전자의 다중 도입(multiple copy numbers)에 의한 불안정적인 발현 및 유전자 침묵(gene silencing)등이 문제점으로 지적되고 있다(Matzke et al., 1994; Wang et al.
조직배양 기술은 어떤 분야에서 활용되고 있는가? 식물의 세포나 조직을 기내에서 배양하여 그 조직이나 기관을 증식시키는 조직배양 기술은 유전자원의 보존, 무병묘 생산, 세포 대량증식과 같은 분야뿐만 아니라 유전적으로 동일한 개체를 획득할 수 있는 반수체 배양, 이형 세포 융합을 위한 원형질체 배양 및 유전자의 형질전환 기법 등과 같은 식물 생명공학분야에서도 다양하게 활용되고 있다(Buter et al., 1993; Flores et al.
콩의 조직배양 연구의 한계점은? 식품 원료 외에도 공업용, 사료용 및 녹비용 등 다양한 용도로 이용되고 있다(Singh and Hymowitz, 1999). 현재 콩의 조직배양 연구는 반수체 및 원형질체 배양을 통한 식물체 재분화 효율이 매우 낮고, 식물체 재분화를 통한 형질전환 기술은 일부 품종에 국한되어 있다(Dhir et al., 1992; Hai et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (129)

  1. Aragao, F.J.L., L. Sarokin, G.R. Vianna and E.L. Rech. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merrill] plants at a high frequency. Theor. Appl. Genet. 101:1-6. 

  2. Bajaj, Y.P.S., S.K. Mahajan and K.S. Labana. 1986. Interspecific hybridization of Brassica napus and B. juncea through ovary, ovule and embryo culture. Euphytica 35:103-109. 

  3. Bao, A., H. Chen, L. Chen, S. Chen, Q. Hao, W. Guo, D. Qiu, Z, Shan, Z. Yang, S. Yuan, C. Zhang, X. Zhang, B. Liu, F. Komg, Xia Li, X. Zhou, L.S.P. Tran and D. Cao. 2019. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19:131. 

  4. Barwale, U.B., M.M. Meyer and J.M. Widholm. 1986. Screening of Glycine max and Glycine soja genotypes for multiple shoot formation at the cotyledonary node. Theor. Appl. Genet. 72:423-428. 

  5. Bezouw, R., J.J.B. Keurentjes, J. Harbinson and M. Aarts. 2019. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J. 97(1): 112-133. 

  6. Blanca, J., C. Esteras, P. Ziarsolo, D. Perez, V.F.N. Pedrosa, C. Collado, R.R.D. Pablos, A. Ballester, C. Roig, J. Canizares and B. Pico. 2012. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280. 

  7. Bolibok, H., A. Gruszczynska, A. Hromada-Judycka, and M. Rakoczy-Trojanowska. 2007. The identification of QTLs associated with the in vitro response of rye (Secale cereal L.). Cell Mol. Biol. Lett. 12:523-535. 

  8. Buter, B., S.M. Pescitelli, K. Berger, J.E. Schmid and P. Stamp. 1993. Autoclaved and filter sterilized liquid media in maize anther culture: significance of activated charocoal. Plant Cell Rep. 13:79-82. 

  9. Cai, Y., L. Chen, X. Liu, C. Guo, S., Sun, C. Wu, B. Jiang, T. Han and W. Hou. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotech. J. 16:176-185. 

  10. Chen, L.P., M.F. Zhang, Q.B. Xiao, J.G. Wu and Y. Hirata. 2004. Plant regeneration from hypocotyl protoplasts of red cabbage (Brassica oleracea) by using nurse cultures. Plant Cell Tissue Org. Cult. 77:133-8. 

  11. Chen, R., K. Matsui, M. Ogawa, M. Oe, M. Ochiai, H. Kawashima, E. Sakuradani, S. Shimizu, M. Ishimoto, M. Hayashi, M. Yoshikatsu and T. Yoshikazu. 2006. Expression of ${\Delta}6$ , ${\Delta}5$ desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci. 170:399-406. 

  12. Chiera, J.M., J.J. Finer and E.A. Grabau. 2004. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol. Biol. 56:895-904. 

  13. Chun, J.B., M. Jin, N. Jeong, C. Cho, M.S. Seo, M.S. Choi, D.Y. Kim, H.B. Sohn and Y.H. Kim. 2019. Genetic identification and phylogenic analysis of new varieties and 149 Korean cultivars using 27 InDel markers selected from dense variation blocks in soybean (Glycine max (L.) Merrill). Korean J. Plant Res. 32(5):519-542 (in Korean). 

  14. Cistue, L., M. Soriano, A.M. Castillo, M.P. Valles, J.M. Sanz and B. Echavarri. 2006. Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep. 25:257-264. 

  15. Collonnier, U., I. Fock, M.C. Daunay, A. Servaes, F. Vedel, S. Siljak-Yakovlev, V. Souvannavong and D. Sihachakr. 2003. Somatic hybrids between Solanum melongena and S. sisymbrifolium, as a useful source of resistance against bacterial and fungal wilts. Plant Sci. 164:849-61. 

  16. Cunha, N.B., A.M. Murad, T.M. Cipriano, A.C.G. Araujo, F.J.L. Aragao, A. Leite, G.R. Vianna, T.R. McPhee, G.H.M.F. Souza, M.J. Waters and E.L. Rech. 2011. Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 20:811-826. 

  17. Cunha, W.G., M.L.P. Tinoco, H.L. Pancoti, R.E. Ribeiro and F.J.L. Aragao. 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylate gene. Plant Pathol. 59:654-660. 

  18. Dan, Y. and N.A. Reighceri. 1998. Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev. Biol. Plant 34:14-21. 

  19. Dang, W. and Z. Wei. 2007. An optimized Agrobacteriummediated transformation for soybean for expression of binary insect resistance genes. Plant Sci. 173:381-389. 

  20. Dhir, S.K., S. Dhir and J.M. Widholm. 1991. Plantlet regeneration from immature cotyledon protoplasts of soybean (Glycine max L.). Plant Cell Rep. 10(1):39-43. 

  21. Dhir, S.K., S. Dhir and J.M. Widholm. 1992. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): Genotypic differences in culture response. Plant Cell Rep. 11(5-6):285-289. 

  22. Du, H., X. Zeng, M. Zhao, X. Cui, Q. Wang, H. Yang, H. Cheng and D. Yu. 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol. 217:90-97. 

  23. Dufourmantel, N., G. Tissot, F. Goutorbe, F. Garcon, C. Muhr, S. Jansens, B. Pelissier, G. Peltier and M. Dubald. 2005. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol. 58:659-668. 

  24. Dufourmantel, N., M. Dubald, M. Matringe, H. Canard, F. Garcon, C. Job, E. Kay, J.P. Wisniewski, J.M. Ferullo, B. Pelissier, A. Sailland and G. Tissot. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotech. J. 5:118-133. 

  25. Eck, J.V. 2018. Genome editing and plant transformation of solanaceous food crops. Curr. Opin. Biotech. 49:35-41. 

  26. Eckert, H., B.L. Vallee, B.J. Schweiger, A.J. Kinney, E.B. Cahoon and T. Clemente. 2006. Co-expression of the borage ${\Delta}6$ desaturase and the Arabidopsis ${\Delta}15$ desaturase results in high accumulation of steridonic acid in the seeds of transgenic soybean. Planta 224:1050-1057. 

  27. Farnham, M.W. 1998. Doubled-haploid broccoli production using anther culture: effect of anther source and seed set characteristics of derived lines. J. Amer. Soc. Hort. Sci. 123: 73-77. 

  28. Ferrie, A. and W.A. Keller. 1995. Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep. 14:580-584. 

  29. Finer, J.F., and A. Nagasawa. 1988. Development of an embyrogenic suspension culture of soybean (Glycine max Merill). Plant Cell Tissue Org. Cult. 15:125-136. 

  30. Flores, T., O. Karpova, X. Su, P. Zeng, K. Bilyeu, D.A. Sleper, H.T. Nguyen and Z.J. Zhang. 2008. Silencing of GmFAD3 gene by siRNA leads to low ${\alpha}$ -linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. 17:839-850. 

  31. Gaj, M.D., S.B. Zhang, J.J. Harada and P.G. Lemaus. 2005. LEAFT COTYLEDON genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977-988. 

  32. Gamborg, O.L., B.P. Davis and R.W. Stahlhut. 1983. Somatic embryogenesis in cell cultures of Glycine species. Plant Cell Rep. 2:209-212. 

  33. Gazzarrini, S., Y. Tsuchiya, S. Lumba, M. Okamoto and P. Mccourt. 2004. The transcription factor FUSCA3 controls development timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev. Cell 7:373-385. 

  34. Ge, X.J., Z.H. Chu, Y.J. Lin and S.P. Wang. 2006. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 25:392-402. 

  35. Guiderdoni, E., E. Galinato, J. Luistro and G. Vergara. 1992. Anther culture of tropical japonica x indica hybrids of rice (Oryza sativa L.). Euphytica 62(3):219-224. 

  36. Guo, W.W., D. Prasard, Y.P. Cheng, P. Serrano, X.X. Deng and J.W. Grosser. 2004. Targeted cybridization in citrus: transfer of Satuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Rep. 22:752-758. 

  37. Hai, N.H., S.K. Lal, S.K. Singh, A. Talukdar and Vinod. 2016. Anther culture of Glycine max (Merr.): Effect of media on callus induction and organogenesis. Indian J. Genet. 76(3):319-325. 

  38. Hamada, H., Q. Linghu, Y. Nagira, R. Miki, N. Taoka and R. Imai. 2017. An in planta biolistic method for stable wheat transformation. Sci. Rep. 7:11443. 

  39. Hammatt, A. and M.R. Davey. 1988. Isolation and culture of soybean hypocotyl protoplasts. In Vitro Cell. Develop. Biol. 24(6): 601-604. 

  40. Hansen, G. and M.S. Wright. 1999. Recent advances in the transformation of plants. Trends in Plant Sci. 4(6): 226-231. 

  41. He, G.Y. and P.A. Lazzeri. 2001. Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119:369-376. 

  42. Hecht, V., J.P. Vielle-calzada, M.V. Hartog, E.D. Schmidt, K. Boutilier, U. Grossniklaus, and S.C.D. Vries. 2001. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127:803-816. 

  43. Herman, E.M., R.M. Helm, R. Jung and A.J. Kinney. 2003. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132:36-43. 

  44. Hinchee, M., A.W. Connor-Ward, D.V. Newell, C.A. Mcdonnell, R.E. S.J. Sato, C.S. Gasser, D.A. Fischhoff, D.B. Re, R.T. Fraley and R.B. Horsch. 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotech. 6:915-922. 

  45. Ivers, D.R., R.G. Palmer and W.R. Fehr. 1974. Anther culture in soybeans. Crop Sci. 14(6):891-893. 

  46. Ishida, Y, Y. Hiei and T. Komari. 2007. Agrobacteriummediated transformation of maize. Nat. Protoc. 2:1614-1621. 

  47. Jacquard, C., F. Nolin, C. Hecart, D. Grauda, I. Rashal, S. Dhondt-Cordelier, R.S. Sangwan, P. Devaus, F. Mazeyrat-Gourbeyre and C. Clement. 2009. Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep. 28:1329-1339. 

  48. Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan and G. Venkataraman. 2018. CRISPR for crop improvement: An update review. Front. Plant Sci. 9:985. 

  49. Jeong, N., K.S. Kim, S. Jeong, J.Y. Kim, S.K. Park, J.S. Lee, S.C. Jeong, S.T. Kang, B.K. Ha, D.Y. Kim, N. Kim, J.K. Moon and M.S. Choi. 2019. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14(10):e0224074. 

  50. Kakkar, R.K., P.K. Nagar, P.S. Ahuja and V.K. Rai. 2000. Polyamines and plant morphogenesis. Biol. Plant 43:1-11. 

  51. Kaltchuk-Santos, E., J.E. Mariath, E. Mundstock, C.Y. Hu and M.H. Bodanese-Zanettini. 1997. Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tissue Org. Cult. 49(2):107-115. 

  52. Kaneda, Y., Y. Tabei, S. Nishimura, K. Harada, T. Akihama and K. Kitamure. 1997. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybean (Glycine max (L.) Merrill). Plant Cell Rep. 17:8-12. 

  53. Karthik, S., G. Pavan, V. Krishnan, S. Sathish and M. Manickavasagam. 2019. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. Biocatal. Agricult. Biotech. 19:101173. 

  54. Kao, K.N., W.A. Keller and R.A. Miller. 1970. Cell division in newly formed cells from protoplasts of soybean. Exp. Cell Res. 62:338-340. 

  55. Kao, K.N., F. Constabel, M.R. Michayluk and O.L. Gamborg. 1974. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120(3):215-227. 

  56. Keller, W.A. and K.C. Armstrong. 1983. Production of haploids via anther culture in Brasica oleracea var. Italica. Euphytica 32:151-159. 

  57. Khalafalla, M.M., S.M. Rahman, E.S. Ha, Y. Nakamoto, K. Wakasa and M. Ishimoto. 2005. Optimization of particle bombardment conditions by monitoring of transient sGFP (S65T) expression in transformed soybean. Breed. Sci. 55:257-263. 

  58. Kim, D.G., V. Kantayos, D.K. Kim, H.G. Park, H.H. Kim, E.S. Rha, S.C. Lee and C.H. Bae. 2016. Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Korean J. Plant Res. 29(1):143-153 (in Korean). 

  59. Kim, H.J., H.S. Cho, J.H. Park, K.J. Kim, D.H. Lee and Y.S. Chung. 2017. Overexpression of a chromatin architecturecontrolling ATPG7 has positive effect on yield components in transgenic soybean. Plant Breed. Biotech. 5(3):237-242. 

  60. Kim, W.S. and H.B. Krishnan. 2004. Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant biotech. J. 2:199-210. 

  61. Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama and M. Ishimoto. 2007. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26:439-447. 

  62. Klein, A.S., D. Montezinos and D.P. Delmer. 1981. Cellulose and 1,3-glucan synthesis during the early stages of wall regeneration in soybean protoplasts. Planta 152(2):105-114. 

  63. Komatsuda, T. and K. Ohyama. 1988. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor. Appl. Genet. 75(5):695-700. 

  64. Lhee, W.Y., Y.H. Cho and K.Y. Paek. 1997. Effect of BA and GA on embryo germination from ovule culture in intergeneric hybrids between Brassica and Raphanus. Korean J. Plant Tissue Cult. 24:257-262. 

  65. Li, R., K. Yu, T. Hatanaka and D.F. Hildebrand. 2010. Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotech. J. 8:184-195. 

  66. Li, S., Y. Cong, Y. Liu, T. Wang, Q. Shuai, N. Chen, J. Gai and Y. Li. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci. 24(8):246. 

  67. Lin, C.S., C.T. Hsu, L.H. Yang, L.Y. Lee, J.Y. Fu, Q.W. Cheng, F.H. Wu, H.C.W. Hsiao, Y. Zhang, R. Zhang, W.J. Chang, C.T. Yu, W. Wang, L.J. Liao, S.B. Gelvin and M.C. shih. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotech. J. 16:1295-1310. 

  68. Lin, W., J.T. Odell and R.M. Schreiner. 1987. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84:856-861. 

  69. Mano, Y. and T. Komatsuda. 2002. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105:708-715. 

  70. Matzke, A.J.M., F. Neuhuber, Y.D. Park, P.F. Ambros and M.A. Matzke. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244:219-229. 

  71. McCabe, D.E. and B.J. Martinell. 1993. Transformation of elite cotton cultivars via particle bombardment of meristems. Nature Biotech. 11:596-598. 

  72. Melchers, G. and G. Labib. 1974. Somatic hybridisation of plants by fusion of protoplasts. Mol. Gen. Genet. 135(4): 277-294. 

  73. Neale D.B., J.L. Wegrzyn, K.A. Stevens, A.V. Zimin, D.Puiu, M.W. Crepeau, C. Cardeno, M. Koriabine, A.E. Holtz-Morris, J.D. Liechty, P.J. Martinez-Garcia, H.A. Vasquez-Gross, B.Y. Lin, J.J. Zieve, W.M. Dougherty, S. Fuentes-Soriano, L. Wu, D. Gilbert, G. Marcais, M. Roberts, C. Holt, M. Yandell, J.M. Davis, K.E. Smith, J.F.D. Dean, W.W Lorenz, R.W. Whetten, R. Sederoff, N. Wheeler, P.E. McGuire, D. Main, C.A. Loopstra, K. Mockaitis, P.J. deJong, J.A. Yorke, S.L. Salzberg and C.H. Langley. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15:R59. 

  74. Newell, C.A. and H.T. Luu. 1985. Protoplast culture and plant regeneration in Glycine canescens F. J. Herm. Plant Cell Tissue Org. Cult. 4(2):145-149. 

  75. Nguyen, K.L., A. Grondin, B. Courtois and P. Gantet. 2019. Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 24(3):263-274. 

  76. Nishimura, A., M. Ashikari, S. Lin, T. Takashi, E.R. Angeles, T. Yamamoto and M. Matsuoka. 2005. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. PNASU 102(33):11940-11944. 

  77. Ochatt, S., C. Pech, R. Grewal, C. Conreux, M. Lulsdorf and L. Jacas. 2009. Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J. Plant Physiol. 166:1314-1328. 

  78. Parrott, W.A., E.G. Williams, D.F. Hildebrand and G.B. Collins. 1989. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tissue Org. Cult. 16:15-21. 

  79. Parrott, W.A., J.N. All, M.J. Adang, M.A. Bailey, H.R. Boerma, and C.N. Stewart, JR. 1994. Recovery and evaluation of soybean plants transgenic for a bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell. Dev. Biol. 30:144-149. 

  80. Phippen, C. and D.J. Ockendon. 1990. Genotype, plant, bud size and media factors affecting anther culture of cauliflowers (Brassica oleracea var. botrytis). Theor. Appl. Genet. 79:33-38. 

  81. Qian, W., R. Liu and J. Meng. 2003. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica 134:9-15. 

  82. Rakshit, S., Z. Rashid, J.C. Sekhar, T. Fatma and S. Dass. 2009. Callus induction and whole plant regeneration in elite indian maize (Zea mays L.) inbreds. Plant Cell Tissue Org. Cult. 100:31-37. 

  83. Raza, G., M.B. Singh and P.L. Bhalla. 2017. In vitro plant regeneration from commercial cultivars of soybean. BioMed Res. Int. 2017:7379693. 

  84. Rhodes, C.A., D.A. Pierce, I.J. Mettler, D. Mascarenhas and J.J. Detmer. 1988. Genetically transformed maize plants from protoplast. Science 240(4849):204-207. 

  85. Rodrigues, L.R., J.M.S Oliveira, J.E.A. Mariath, and M.H. Bodanese-Zanettini. 2005. Histology of embryogenic responses in soybean anther culture. Plant Cell Tissue Org. Cult. 80(2): 129-137. 

  86. Sahoo, K.K., A.K. Tripathi, A. Pareek, S.K. Sopory and S.L. Singla-Pareek. 2011. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7:49. 

  87. Sairam, R.V., G. Franklin, R. Hassel, B. Smith, K. Meeker, N. Kashikar, M. Parani, A. Dal, S. Ismail, K. Berry and L. Goldman. 2003. A study on effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tissue Org. Cult. 75:79-85. 

  88. Sato, S., A. Xing, X. Ye, B. Schweiger, A. Kinney, G. Graef and T. Clemente. 2004. Production of ${\gamma}$ -linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop. Sci. 44:646-652. 

  89. Schmutz J., S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng, D. Xu, U. Hellsten, G.D. May, Y. Yu, T. Sakurai, T. Umezawa, M.K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R.C. Shoemaker and S.A. Jackson. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183. 

  90. Seo, M.S., M. Jin, S.S. Lee, S.J. Kwon, J.H. Mun, B.S. Park, R.G.F. Visser, G. Bonnema and S.H. Sohn. 2013. Mapping quantitative trait loci for tissue culture response in VCS3MDH population of Brassica rapa. Plant Cell Rep. 32:1251-1261. 

  91. Seo, M.S., S.H. Sohn, B.S. Park, H.C. Ko and M. Jin. 2014. Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions. J. Plant Biotech. 41:116-122 (in Korean). 

  92. Seo, M.S., Won S.Y., Kang S.H., S.H. Sohn and J.S. Kim. 2015. Development of tissue culture technology for haploid production in Brassica species. Korean J. Int. Agric. 27(4): 522-528 (in Korean). 

  93. Shan, Z., K. Raemakers, E.N. Tzitzikas, Z. Ma and R.G. Visser. (2005) Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L.) Merr). Plant Cell Rep. 24(9):507-512. 

  94. Shetty, K., Y. Asano, and K. Oosawa. 1992. Stimulation of in vitro shoot organogenesis in Glycine max (Merrill.) by allantoin and amides. Plant Sci. 81:245-251. 

  95. Singh, R.J. and T. Hymowitz. 1999. Soybean genetic resources and crop improvement. Genome 42:605-616. 

  96. Staswick, P.E., Z. Zhang, T.E. Clemente and J.E. Specht. 2001. Efficient down-regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity. Plant Physiol. 127(4):1819-1826. 

  97. Sun, X., Z. Hu, R. Chen, Q. Jiang, G. Song, H. Zhang and Y. Xi. 2015. Targeted mutagenesis in soybean using the CRISPRCas9 system. Sci. Rep. 5:10342. 

  98. Taguchi-Shiobara, F., S.Y. Lin, K. Tanno, T. omatsuda, M. Yano, T. Sasaki and S. Oka. 1997. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 95:828-833. 

  99. Taguchi-Shiobara, F., T. Yamamoto, M. Yano and S. Oka. 2006. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet. 112:968-976. 

  100. Takagi, K., K. Nishizawa, A. Hirose, A. Kita and M. Ishimoto. 2011. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of ${\beta}$ -amyrin synthase gene expression in soybean. Plant Cell Rep. 30:1835-1846. 

  101. Thakare, D., W. Tang, K. Hill and S.E. Perry. 2008. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146(4):1663-1672. 

  102. Tougou, M., N. Yamagishi, N. Furutani, Y. Shizukawa, Y. Takahata and S. Hidaka. 2007. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene. Plant Cell Rep. 26:1967-1975. 

  103. Touraev, A., A. Ilham, O. Vicente and E. Heberle-Bors. 1996. Stress-induced microspore embryogenesis in tobacco: An optimized system for molecular studies. Plant Cell Rep. 15:561-565. 

  104. Travella, S., R.M. Ross, J. Harden, C. Everett, J.W. Snape and W.A. Harwood. 2004. A comparison of transgenic barley lines produced by particle bombardment and Agrobacteriummediated techniques. Plant Cell Rep. 23:780-789. 

  105. Trick, H.N. and J.J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17:482-488. 

  106. Uchimiya, H., T. Fushimi, H. Hashimoto, H. Harada, K. Syono and Y. Sugawara. 1986. Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.). Mol. Gen. Genet. 22:421-477. 

  107. Vagadia, B.H., S.K. Vanga, and V. Raghavan. 2017. Inactivation methods of soybean trypsin inhibitor-a review. Trends Food Sci. Technol. 64:115-125. 

  108. Valente, M.A.S., J.A.Q.A. Faria, J.R.L. Soares-Ramos, P.A.B. Reis, G.L. Pinheiro, N.D. Piovesan, A.T. Morais, C.C. Menezes, M.A.O. Cano, L.G. Fietto, M.E. Loureiro, F.J.L. Aragao and E.P. B. Fontes. 2009. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot. 60:533-546. 

  109. Vasil, I.K. and V. Vasil. 2006. Transformation of wheat via particle bombardment. Meth. Mol. Biol. 318:273-283. 

  110. Velasco, R., A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro, A. Kalyanaraman, P. Fontana, S.K. Bhatnagar, M. Troggio and D. Pruss. 2010. The genome of the domesticated apple (Malus ${\times}$ domestica Borkh.). Nature Genetics 42:833-839. 

  111. Wang, X., S. Liu and Y. Luo. 2009. Research progression soybean tissue culture system and transformation. Soybean Sci. 28:731-735. 

  112. Wei, Z.M. and Z.H. Xu. 1988. Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep. 7(5):348-351. 

  113. Wheatley, W. G., A. A. Marsolais and K. J. Kasha. 1986. Microspore growth and anther staging in wheat anther culture. Plant Cell Rep. 5:47-49. 

  114. Wright, M.S., S.M. Koehler, M.A. Hinchee and M.G. Carnes. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5(2):150-154. 

  115. Yang, C., T.J. Zhao, D.Y. Yu, and J.Y. Gai. 2011. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr). Mol. Cells 32:337-342. 

  116. Yang, Y.S., K. Wada and Y. Futsuhara. 1990. Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Sci. 72(1):101-108. 

  117. Yoshida, T. 2002. Adventitious shoot formation from hypocotyl sections of mature soybean seeds. Breeding Sci. 52:1-8. 

  118. Yu, O., J. Shi, A.O. Hession, C.A. Maxwell, B. McGonigle and J.T. Odell. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753-763. 

  119. Zeng, P., D.A. Vadnais, Z. Zhang and J.C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22:478-482. 

  120. Zernova, O.V., A.V. Lygin, J.M. Widholm and V.V. Lozovaya. 2009. Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes. Plant Physiol. Biochem. 47:769-777. 

  121. Zieg, R.G. and D.E. Outka. 1980. The isolation, culture and callus formation of soybean pod protoplasts. Plant Sci. Lett. 18(2):105-114. 

  122. Zhang, C., X. Wu, B. Zhang, Q. Chen, M. Liu, D. Xin, Z. Qi, S. Li, Y. Ma, L. Wang, Y. Jin, W. Li, X. Wu and A.Y. Su. 2017. Functional analysis of the GmESR1 gene associated with soybean regeneration. Plos ONE 12(4):e0175656. 

  123. Zhang, K., L. Zhao, X. Yang, M. Li, J. Sun, K. Wang, Y. Li, Y. Zheng, Y. Yao and W. Li. 2018. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiol. Plant. 165(4): 814-829. 

  124. Zhang, W. and R. Wu. 1998. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76:835-840. 

  125. Zhang, Y.X., L. Bouvier and Y. Lespinasse. 1992. Microspore embryogenesis induced by low gamma dose irradiation in apple. Plant Breed. 108:173-176. 

  126. Zhao, G., Y. Liu, A. Yin and J. Li. 1998. Germination of embryo in soybean anther culture. Chin. Sci. Bull. 43(23):1991-1995. 

  127. Zhao, Q., Y. Du, H. Wang, H.J. Rogers, C. Yu, W. Liu, M. Zhao, and F. Xie. 2019. 5-azacytiding promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant Physiol. Biochem. 141:40-50. 

  128. Zheng, Q. and S.E. Perry. 2014. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamouslike18. Plant Physiol. 164(3):1365-77. 

  129. Zheng, Q., Y. Zheng, H. Ji, W. Burnie and S.E. Perry. 2016. Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiol. 172(4):2374-2387. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로