$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

물체 크기와 뻗기 거리가 상지 움직임에 미치는 영향
The Effects of Object Size and Reaching Distance on Upper Extremity Movement 원문보기

대한지역사회작업치료학회지= The Journal of Korean Society of Community Based Occupational Therapy, v.10 no.1, 2020년, pp.51 - 61  

배수영 (동아대학교 대신요양병원) ,  김태훈 (동서대학교 보건의료계열 작업치료학과)

초록
AI-Helper 아이콘AI-Helper

목적 : 정상인을 대상으로 팔뻗기 수행 시 물체 크기와 뻗기 거리가 상지의 운동형상학적 요소에 미치는 영향을 알아보고자 하였다. 연구 방법 : 대상자는 부산시 D대학교에 재학 중인 대학생 30명이며 측정 도구는 삼차원 동작 분석기인 CMS-70P(Zebris Medizintechnik Gmbh, Germany)를 사용하였다. 과제는 6가지 조건이다. 팔뻗기 수행시 물체 크기(2cm, 10cm)와 뻗기 거리(15%, 37.5%, 60%)의 변화에 따른 움직임의 평균 속도, 평균 가속도, 최대 속도, 속도의 정점수를 측정하였다. 대상자의 일반적 특성은 기술통계를 사용하였다. 두 가지 물체 크기에서 세 가지 뻗기 거리로 팔뻗기 과제를 수행했을 때 변수를 비교하기 위해 일원분산분석(One-way ANOVA measure)으로 분석하였고, 사후검정은 Tukey 검정을 실시하였다. 또한 세 가지 뻗기 거리에서 두 가지 물체 크기에 따른 운동형상학적 차이를 분석하기 위해서 독립 t검정(Independent t-test)을 사용하였다. 팔뻗기 거리(15%, 37.5%, 60%)와 물체 크기(2cm, 10cm)에 따른 상호작용효과를 확인하기 위해 이원분산분석(3×2 Two-way ANOVA measure)을 실시하였다. 통계적 유의수준 α는 .05로 설정하였다. 결과 : 정상인은 물체 크기와 뻗기 거리의 변화에 따라 상지 움직임에 유의한 차이가 있었다. 물체 크기가 동일한 경우 뻗기 거리가 길어질수록 평균 속도, 최대속도가 증가하였고, 속도의 정점 수는 감소하였다. 뻗기 거리가 동일한 경우 물체 크기가 커질수록 평균 속도, 최대 속도가 증가하였고 속도의 정점 수는 감소하였다. 물체 크기와 뻗기 거리의 변화는 평균 가속도에 영향을 미치지 않았으며 유의한 차이가 없었다. 결론 : 과제를 시간적, 공간적 특성으로 제한하는 것은 대상자의 상지 움직임에도 영향을 미치게 된다. 따라서 본 연구의 결과를 토대로 신경학적 기능수준에 따라 세밀하게 등급화된 과제제공에 도움이 될 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Objectives : The purpose of this study is to investigate the effect of object size and reaching distance on kinematic factors of the upper limb while performing arm reaching for normal subjects. Methods : The subjects of this study were 30 university students who were in D university in Busan, and t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 정상인을 대상으로 팔길이의 15%, 37.5%, 60%의 거리에서 크기가 다른 물체를 잡기위해 팔뻗기 수행 시 물체 크기 및 뻗기 거리가 상지의 운동형상학적 변수-평균 속도, 평균 가속도, 최대 속도, 속도의 정점 수-에 미치는 영향을 분석하고, 두 변수 사이의 상호작용효과도 확인하고자 하였다.
  • 본 연구는 삼차원 동작 분석기를 활용하여 물체 크기 및 뻗기 거리변화가 운동형상학적 변수(속도, 가속도, 최대 속도, 속도의 정점 수)에 미치는 영향을 분석하였다. 속도는 물체 크기 및 뻗기 거리와 비례하였으나 가속도는 물체 크기 및 뻗기 거리와 유의한 관련성이 없었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
팔 뻗기 수행 시 무엇이 필요한가? 팔뻗기는 원하는 위치에 손을 위치시키는 것을 의미하며, 다중 관절의 협응을 필요로 한다(Vingerhoets, 2014). 팔 뻗기 수행 시 피드포워드와 피드백이 요구되며, 이를 위해서는 시각계, 몸감각계, 운동계의 상호작용이 필요하다(Shumway-Cook & Woollacott, 2012).
팔뻗기란? Occupational Therapy Practice Framework-3 (OTPF-3)에 따르면 팔뻗기는 기본적 및 수단적 일상생활활동을 수행하기 위해서 필수적인 전제조건이다(Yoo, Park, & Kim, 2005). 팔뻗기는 원하는 위치에 손을 위치시키는 것을 의미하며, 다중 관절의 협응을 필요로 한다(Vingerhoets, 2014). 팔 뻗기 수행 시 피드포워드와 피드백이 요구되며, 이를 위해서는 시각계, 몸감각계, 운동계의 상호작용이 필요하다(Shumway-Cook & Woollacott, 2012).
몸감각계를 통해 입력된 고유수용성감각은 어떤 역할을 하는가? 또한 몸감각계를 통해 고유수용성감각이 입력된다. 이 감각은 대뇌겉질과 소뇌에서 근육이나 관절 수용기 등에서 발생하는 정보를 수용하여 몸의 자세를 인식하게 한다(Chiba, Kaminishi, Takakusaki, & Ota, 2017). Multisensory alterations in visual, 몸감각계가 정상일 때 다양한 환경 안에서 몸의 자세를 자동적으로 조절할 수 있다(Kramer & Hinojosa, 2011).
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Amini, D., Kannenberg, K., Bodison, S., Chang, P., Colaianni, D., Goodrich., B., et al. (2014). Occupational therapy practice framework: Domain & process (3rd ed.). American Journal of Occupational Therapy, 68(1), 1-48. doi.org/10.5014/ajot.2014.682006 

  2. Chiba, R., Kaminishi, K., Takakusaki, K., & Ota, J. (2017). Multisensory alterations in visual, vestibular and proprioceptive cues for modeling of postural control. 2017 International Symposium on Micro-NanoMechatronics and Human Science. doi.org/10.1109/MHS.2017.8305207 

  3. Dean, M., Wu, S. W., & Maloney, L. T. (2007). Trading off speed and accuracy in rapid, goal-directed movements. Journal of Vision, 7(5), 1-12. doi.org/10.1167/7.5.10 

  4. Fisk, J. D., Fisk, J. D., & Goodale, M. A. (1989). The effects of instructions to subjects on the programming of visually directed reaching movements. Journal of Motor Behavior, 21(1), 5-19. doi.org/10.1080/00222895.1989.10735461 

  5. Gori, J., Rioul, O., & Guiard, Y. (2018). Speed-accuracy tradeoff. ACM Transactions on Computer-Human Interaction, 25(5), 1-33. doi.org/10.1145/3231595 

  6. Gribble, P. L., Mullin, L. I., Cothros, N., & Mattar, A. (2003). Role of co-contraction in arm movement accuracy. Journal of Neurophysiology, 89(5), 2396-2405. doi.org/10.1152/jn.01020.2002 

  7. Gulde, P., & Hermsdorfer, J. (2018). Smoothness metrics in complex movement tasks. Frontiers in Neurology, 9, 1-7. doi.org/10.3389/fneur.2018.00615 

  8. Hussain, N., Murphy, M. A., & Sunnerhagen, K. S. (2018). Upper limb kinematics in stroke and healthy controls using target-to-target task in virtual reality. Frontiers in Neurology, 9, 1-9. doi.org/10.3389/fneur.2018.00300 

  9. Jessop, A., & Pain, M. (2016), Maximum velocities in flexion and extension action for sport. Journal of Human Kinetics, 50(3), 37-44. doi.org/10.1515/hukin-2015-0139 

  10. Jones, T. A. (2017). Motor compensation and its effects on neural reorganization after stroke. Nature Reviews Neuroscience, 18, 267-280. doi.org/10.1038/nrn.2017.26 

  11. Kim, K. S., Yoo, H. S., Jung, D. H., & Jeon, H. S. (2010). Analysis of movement time and trunk motions according to target distances and use of sound and affected side during upper limb reaching task in patients with hemiplegia. Physical Therapy Korea, 17(1), 36-42. 

  12. Kramer, P., & Hinojosa, J. (2011). Frames of reference for pediatric occupational therapy (3rd ed.). Lippincott Williams & Wilkins. doi.org/10.5014/ajot.49.7.733 

  13. Lundy-Ekman, L. (2013). Neuroscience-E-Book: Fundamentals for rehabilitation (4th ed.). Elsevier Health Sciences. 

  14. Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755-766. doi.org/10.1093/brain/121.4.755 

  15. Mandon, L., Boudarham, J., Robertson, J., Bensmail, D., Roche, N., Roby-Brami, A. (2016). Faster reaching in chronic spastic stroke patients comes at the expense of arm-trunk coordination. Neurorehabilitation and Neural Repair, 30(3), 209-220. 

  16. Massie, C. L., & Malcolm, M. P. (2012). Instructions emphasizing speed improves hemiparetic arm kinematics during reaching in stroke. Neurorehabilitation, 30(4), 341-350. doi.org/10.3233/NRE-2012-0765 

  17. Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125, 139-152. doi.org/10.1007/s002210050669 

  18. Newell, K. M. (1986). Constraints on the development of coordination. Motor Development in Children: Aspects of Coordination and Control, 341-360. doi.org/10.1007/97894-009-4460-2_19 

  19. Newell, K. M., & Valvano, J. (1998). Movement science: Therapeutic intervention as a constraint in learning and relearning movement skills. Scandinavian Journal of Occupational Therapy, 5, 51-57. doi.org/10.3109/110381298 09035730 

  20. Peternel, L., Sigaud, O., & Babic, J. (2017). Unifying speed-accuracy trade-off and cost-benefit trade-off in human reaching movements. Frontiers in Human Neuroscience, 11, 615. doi.org/10.3389/fnhum.2017.00615 

  21. Plamondon, R. (1995). A kinematic theory of rapid human movements. Biological Cybernetics, 72, 295-307. doi.org/10.1007/s004220050132 

  22. Potgieser, A. R. E., & De Jong, B. M. (2011). Different distal-proximal movement balances in right-hand left-hand writing may hint at differential premotor cortex involvement. Human Movement Science, 30, 1072-1078. doi.org/10.1016/j.humov.2011.02.005 

  23. Rose, D. J., & Christina, R. W. (2006). A multilevel approach to the study of motor control and learning (2nd ed.). Benjamin Cummings, Allyn & Bacon. 

  24. Roy, E., Kalbfleisch, L., Bryden, P., Barbour, K., & Black, S. (2000). Visual aiming movements in Alzheimer's disease. Brain and Cognition, 10, 380-384. 

  25. Shumway-Cook, A., & Woollacott, M. H. (2012). Motor control: Translating research into clinical practice (4th ed.). Lippincott, Williams & Wilkins. 

  26. Thelen, E., Skala, K. D., & Kelso, J. S. (1987). The dynamic nature of early coordination: Evidence from bilateral leg movements in young infants. Developmental Psychology, 23(2), 179-186. doi.org/10.1037/0012-1649.23.2.179 

  27. Tresch, M. C., Saltiel, P., D'Avella, A., & Bizzi, E. (2002). Coordination and localization in spinal motor systems. Brain Research Reviews, 40(1-3), 66-79. 

  28. Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5(151), 1-17. doi.org/10.3389/fpsyg.2014.00151 

  29. Volman, M. J. M., Wijnroks, A., & Vermeer, A. (2002). Effect of task context on reaching performance in children with spastic hemiparesis. Clinical Rehabilitation, 16, 684-692. doi.org/10.1191/0269215502cr540oa 

  30. Wang, S. M., Kuo, L. C., Ouyang, W. C., Hsu, H. M., & Ma, H. I. (2018). Effects of object size and distance on reaching kinematics in patients with schizophrenia. Hong Kong Journal of Occupational Therapy, 31(1), 22-29. doi.org/10.1177/1569186118759610 

  31. Wierzbicka, M. M., Wiegner, A. W., & Shahani, B. T. (1986). Role of agonist and antagonist muscles in fast arm movements in man. Experimental Brain Research, 63(2), 331-340. doi.org/10.1007/BF00236850 

  32. Wing, A. M., & Miller, E. (1984). Research note: Peak velocity timing invariance. Psychological Research, 46, 121-127. doi.org/10.1007/BF00308597 

  33. Wu, C. Y., Lin, K. C., Lin, K. H., Chang, C. W., & Chen, C. L. (2005). Effects of task constraints on reaching kinematics by healthy adults. Perceptual and Motor Skills, 100, 983-994. doi.org/10.2466/pms.100.4.983-994 

  34. Wu, C. Y., Trombly, C. A., Lin, K. C., & Tickle-Degnen, L. (2000). A kinematic study of contextual effects on reaching performance in persons with and without stroke: Influences of object availability. Archives of Physical Medicine and Rehabilitation, 81(1), 95-101. doi.org/10.1053/apmr.2000.0810095 

  35. Yoo, W. G., Park, J. H., & Kim, M. H. (2005). Velocity of reaching and vertical displacement during various bimanual reaching target activities. The Journal of Korean Society of Occupational Therapy, 13(2), 41-49. 

  36. Yoo, W. G., Park, J. H., Shin, H. K., Yoo, E. Y., & Choi, J. D. (2004). Effects of distance of target on the movement of arm and trunk during. The Journal of Korean Society of Occupational Therapy, 12(2), 61-71. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로