$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

나노박막 전사 방법 및 계면 파괴 역학
Nanofilm Transfer Methods and Interfacial Fracture Mechanics 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.27 no.3, 2020년, pp.9 - 19  

강수민 (한국과학기술원 기계공학과) ,  김택수 (한국과학기술원 기계공학과)

초록
AI-Helper 아이콘AI-Helper

기능성 나노박막을 손상 없이 목표기판으로 옮기는 전사 기술은 나노박막 기반의 차세대 응용 제품 개발을 위한 초석이다. 본 논문에서는 최근 나노박막 전사의 연구 동향을 박막-기판 계면의 박리 원리에 따라 습식 식각 전사, 전기화학적 박리, 기계식 전사 방법 세 가지로 분류하여 간단하게 살펴볼 것이다. 더 나아가, 손쉽고, 기판 재활용이 가능하며, 광범위한 적용 가능성을 가지고 있어 유망 기술로 간주되는 기계식 전사 방법에 대하여 파괴 역학적 관점에 초점을 맞추어 다룰 것이다. 마지막으로, 나노박막의 기계식 전사 방법의 기술 성숙도를 향상시키기 위한 향후 도전 과제와 방향성에 대하여 고찰하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Transferring of functional nanofilms onto target substrates is a cornerstone to developing nanofilm-based nextgeneration applications. In this work, we provide a brief review of recent advances on nanofilm transfer methods by categorizing them into the following three methods: wet-etching transfer, ...

주제어

표/그림 (19)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 속도, 온도, 구조 등을 포함한 다양한 요인으로 G 를 제어하는 방법, 액체를 이용해 GC를 제어하는 방법 두 가지 방식으로 연구가 진행되어 왔음을 확인하였다. 마지막으로, 균열 휨이 전사 결과에 미칠 수 있는 영향을 고찰하고 기계식 전사 방법의 기술 준비 수준을 향상시키기 위한 향후 연구 방향을 제안하였다.
  • 마지막으로, 기계식 전사 방법의 기술 성숙도를 더욱 향상시키기 위한 방안으로 균열 휨의 영향을 고찰하고자 한다. 실제로, 나노박막의 계면 파괴 및 전사 거동을 정확하게 이해하기 위해서는 G와 G C 의 단순 비교만으로는부족하다.
  • (1)을 기반으로, 균열 진전력 G를 박리 속도, 온도, 표면 구조, 하중 모드, 모세관력 등 여러 요인들을 통해 제어하는 방법, 그리고 나노박막–성장기판 계면의 접합 에너지 GC를액체를 이용하여 제어하는 방법의 두 가지 접근법을 통해 연구가 진행되어 왔다. 본 논문에서는 이러한 기계식 전사 방법의 최근 발전 동향을 G를 제어하는 방법, 그리고 GC를 제어하는 방법으로 나누어 살펴볼 것이다. 이에 더하여, 기계식 전사 연구에서는 충분한 고려가 되어 있지 않지만 박막의 계면 파괴 및 박리 거동에서 중요한 요소인 균열 휨(crack deflection)이 나노박막 전사에 미칠 수 있는 영향을 고찰할 것이다.
  • 나노박막 전사 방법은 박막을 성장기판으로부터 박리 하는 방식에 따라 습식 식각 전사(wet-etching transfer), 전기화학적 박리(electrochemical delamination), 기계적 전사 (mechanical transfer) 세가지 방법으로 분류할 수 있다. 본논문에서는 각각의 전사 방법에 대한 메커니즘과 장단점을 간단하게 살펴볼 것이다. 더 나아가, 간단하고, 기판의 재활용이 가능하며, 광범위하게 적용 가능한 특성을 가지고 있는 기계식 전사 방법에 대한 연구를 파괴 역학적 관점에서 논하고, 향후 도전 과제와 방향성을 제안하고자 한다.

가설 설정

  • 나노박막 기반 차세대 응용 제품이 상용화까지 도달하기 위해서는 (i) 고품질 기능성 박막의 제조 기술, (ii) 박막을 손상 없이 전사할 수 있는 기술, (iii) killer application 의 세 가지 핵심 요건을 모두 갖추어야 한다. 본 논문에 서는 두 번째 요건인 나노박막의 전사 기술을 박막의 박리 원리에 따라 습식 식각 전사, 전기화학적 박리, 기계식 전사 방법으로 분류하여 간략하게 살펴보았다.
  • 둘째, 성공적인 전사를 위해 나노박막–성장기판 사이의 접합 에너지 GC를 초과하는 큰 균열 진전력 G를 인가해야 한다는 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
나노박막 기반의 차세대 응용 제품 개발을 위한 초석은 무엇인가? 기능성 나노박막을 손상 없이 목표기판으로 옮기는 전사 기술은 나노박막 기반의 차세대 응용 제품 개발을 위한 초석이다. 본 논문에서는 최근 나노박막 전사의 연구 동향을 박막-기판 계면의 박리 원리에 따라 습식 식각 전사, 전기화학적 박리, 기계식 전사 방법 세 가지로 분류하여 간단하게 살펴볼 것이다.
본 논문에서 나노박막 전사 방법은 박막-기판 계면의 박리 원리에 따라 어떻게 나뉘는가? 기능성 나노박막을 손상 없이 목표기판으로 옮기는 전사 기술은 나노박막 기반의 차세대 응용 제품 개발을 위한 초석이다. 본 논문에서는 최근 나노박막 전사의 연구 동향을 박막-기판 계면의 박리 원리에 따라 습식 식각 전사, 전기화학적 박리, 기계식 전사 방법 세 가지로 분류하여 간단하게 살펴볼 것이다. 더 나아가, 손쉽고, 기판 재활용이 가능하며, 광범위한 적용 가능성을 가지고 있어 유망 기술로 간주되는 기계식 전사 방법에 대하여 파괴 역학적 관점에 초점을 맞추어 다룰 것이다.
기계적 전사방법의 장점은? 이러한 기계식 전사 방식은 여러 장점을 가지고 있다. 먼저, 공정이 간단하여 손쉽게 수행 가능하고, 값비싼 성장기판의 재활용이 가능하다(Fig. 6).39) 또한 전기화학적 박리 방법과 다르게 적용할 수 있는 나노박막 재료가 국한되어 있지 않고 광범위하며, 곡면 등 다양한 형상의 목표기판에도 적용할 수 있다.41,42) 특히, 재료의 새로운 기능성과 특성을 구현할 수 있어 최근 각광을 받고 있는 나노박막의 반데르발스 이종 구조(van der Waalsheterostructures, vdWHs)를 제작하기 위한 layer-by-layer 적층에 있어서, 목표기판 전체를 액체에 담그어야 하는 습식 식각 전사43) 또는 전기화학적 박리보다 더 유리한 접근법이라고 할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (91)

  1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-Dimensional Gas of Massless Dirac Fermions in Graphene", Nature, 438, 197 (2005). 

  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902 (2008). 

  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene", Science, 320, 1308 (2008). 

  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, M. J. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706 (2009). 

  6. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics", Nat. Photonics., 4, 611 (2010). 

  7. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). 

  8. S. K. Lee, K. Rana, and J. H. Ahn, "Graphene Films for Flexible Organic and Energy Storage Devices", J. Phys. Chem. Lett., 4, 831 (2013). 

  9. D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, and D.-H. Kim, "Multifuntional Wearable Devices for Diagonosis and Therapy of Movement Disorders", Nat. Nanotech., 9, 397 (2014). 

  10. J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D.-H. Kim, "Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis", Nat. Commun., 5, 5747 (2014). 

  11. Y. H. Ko, K. Choi, S. W. Kim, D. Y. Yu, J. Bang, and T. S. Kim, "Trends of Researches and Technologies of Electronic Packaging Using Graphene", J. Microelectron. Packag. Soc., 23(2), 1 (2016). 

  12. H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, and J. H. Ahn, "Graphene-Based Flexible and Stretchable Electronics", Adv. Mater., 28, 4184 (2016). 

  13. H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, "Micro Light Emitting Diodes for Display and Flexible Biomedical Applications", Adv. Funct. Mater., 29, 1808075 (2019). 

  14. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of $MoS_2$ Atomic Layers on a $SiO_2$ Substrate", Small, 8(7), 966 (2012). 

  15. Y. Nam, H. O. Kim, S. H. Cho, and S. H. K. Park, "Effect of Hydrogen Diffusion in an In-Ga-Zn-O Thin Film Transistor with an Aluminum Oxide Gate Insulator on Its Electrical Properties", RCS Adv., 8, 5622 (2018). 

  16. B. Deng, Z. Liu, and H. Peng, "Toward Mass Production of CVD Graphene Films", Adv. Mater., 31, 1800996 (2019). 

  17. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New Approaches to Nanofabrication: Molding, Printing, and Other Techniques", Chem. Rev., 105, 1171 (2005). 

  18. M. Konagai, M. Sugimoto, and K. Takahashi, "High Efficiency GaAs Thin Film Solar Cells by Peeled Film Technology", J. Cryst. Growth, 45, 277 (1978). 

  19. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs Photovoltaics and Optoelectronics Using Releasable Multilayer Epitaxial Assemblies", Nature, 465, 329 (2010). 

  20. C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, "Epitaxial Lift-Off Process for Gallium Arsenide Substrate Reuse and Flexible Electronics", Nat. Commun., 4, 1577 (2013). 

  21. N. K. Mahenderkar, Q. Chen, Y. C. Liu, A. R. Duchild, S. Hofheins, E. Chason, and J. A. Switzer, "Epitaxial Liff-Off of Electrodeposited Single-Crystal Gold Foils for Flexible Electronics", Science, 355, 1203 (2017). 

  22. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes", Nano Lett., 9(12), 4359 (2009). 

  23. K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, and L. J. Li, "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates", Nano Lett., 12(3), 1538 (2012). 

  24. S. Fan, Q. A. Vu, M. D. Tran, S. Adhikari, and Y. H. Lee, "Transfer Assembly for Two-Dimensional van der Waals Heterostructures", 2D Mater., 7, 022005 (2020). 

  25. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, "The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to $SiO_2$ ", Appl. Phys. Lett., 99, 122108 (2011). 

  26. H. H. Kim, B. Kang, J. W. Suk, N. Li, K. S. Kim, R. S. Ruoff, W. H. Lee, and K. Cho, "Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons", ACS Nano, 9(5), 4726 (2015). 

  27. H. V. Ngoc, Y. Qian, S. K. Han, and D. J. Kang, "PMMAEtching-Free Transfer of Wafer-Scale Chemical Vapor Deposition Two-Dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method", Sci. Rep., 6, 33096 (2016). 

  28. Z. Zhang, J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H. M. Cheng, and W. Ren, "Rosin-Enabled Ultraclean and Damage-Free Transfer of Graphene for Large-Area Flexible Organic Light-Emitting Diodes", Nat. Commun., 8, 14560 (2017). 

  29. W. S. Leong, H. Wang, J. Yeo, F. J. Martin-Martinez, A. Zubair, P. C. Shen, Y. Mao, T. Palacio, M. J. Buehler, J. Y. Hong, and J. Kong, "Paraffin-Enabled Graphene Transefer", Nat. Commun., 10, 867 (2019). 

  30. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Rollto-Roll Production of 30-Inch Graphene Films for Transparent Electrodes", Nat. Nanotech., 5, 574 (2010). 

  31. B. Jang, C. H. Kim, S. T. Choi, K. S. Kim, K. S. Kim, H. J. Lee, S. Cho, J. H. Ahn, and J. H. Kim, "Damage Mitigation in Roll-to-Roll Transfer of CVD-Graphene to Flexible Substrates", 2D Mater., 4, 024002 (2017). 

  32. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst", ACS Nano, 5(12), 9927 (2011). 

  33. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, and H. M. Cheng, "Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum", Nat. Commun., 3, 699 (2012). 

  34. Z. Tang, C. Neumann, A. Winter, and A. Turchanin, "Electrochemical Delamination Assisted Transfer of Molecular Nanosheets", Nanoscale, 12, 8656, (2020). 

  35. B. Deng, P. C. Hsu, G. Chen, B. N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, and H. Peng, "Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes", Nano Lett., 15(6), 4206 (2015). 

  36. Y. Gao, Z. Liu, D. M. Sun, L. Huang, L. P. Ma, L. C. Yin, T. Ma, Z. Zhang, X. L. Ma, L. M. Peng, H. M. Cheng, and W. Ren, "Large-Area Synthesis of High-Quaility and Uniform Monolayer $WS_2$ on Reusable Au Foils", Nat. Commun., 6, 8569 (2015). 

  37. M. M. Tavakoli, G. Azzellino, M. Hempel, A. Y. Lu, F. J. Martin-Martinez, J. Zhao, J. Yeo, T. Palacios, M. J. Buehler, and J. Kong, "Synergistic Roll-to-Roll Transfer and Doping of CVD-Graphene Using Parylene for Ambient-Stable and Ultra-Lightweight Photovoltaics", Adv. Funct. Mater., 31, 2001924 (2020). 

  38. C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, "'Bubble-Free' Electrochemical Delamination of CVD Graphene Films", Small, 11(2), 189 (2015). 

  39. T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, and B. J.Cho, "Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process", Nano Lett., 12(3), 1448 (2012). 

  40. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer Printing by Kinetic Control of Adhesion to an Elastometric Stamp", Nat. Mater., 5, 33 (2006). 

  41. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes III, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, "A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics", Nature, 454, 748 (2008). 

  42. S. Kang, J. B. Pyo, and T. S. Kim, "Layer-by-Layer Assembly of Free-Standing Nanofilms by Controlled Rolling", Langmuir, 34(20), 5831 (2018). 

  43. A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, "Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers", ACS Nano, 7(6), 5235 (2013). 

  44. K. Kang, K. H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller, and J. Park, "Layer-by-Layer Assembly of Two-Dimensional Materials into Wafer-Scale Heterostructures", Nature, 550, 229 (2017). 

  45. J. S. Bunch and M. L. Dunn, "Adhesion Mechanics of Graphene Membranes", Solid State Commun", 152, 1359 (2012). 

  46. S. P. Koenig, N. G. Boddeti, M. L. Dunn, and S. Bunch, "Ultrastrong Adhesion of Graphene Membranes", Nat. Nanotech., 6, 543 (2011). 

  47. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, "Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping", 2D Mater., 1, 011002 (2014). 

  48. S. R. Na, J. W. Suk, L. Tao, D. Akinwande, R. S. Ruoff, R. Huang, and K. M. Liechti, "Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects", ACS Nano, 9(2), 1325 (2015). 

  49. S. R. Na, S. Rahimi, L. Tao, H. Chou, S. K. Ameri, D. Akinwande, and K. M. Liechti, "Clean Graphene Interfaces by Selective Dry Transfer for Large Area Silicon Integration", Nanoscale, 8, 7523 (2016). 

  50. H. Xin, Q. Zhao, D. Chen, and W. Li, "Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene" J. Micro Nano-Manuf., 6(3), 031004 (2018). 

  51. J. Seo, C. Kim, B. S. Ma, T. I. Lee, J. H. Bong, J. G. Oh, B. J. Cho, and T. S. Kim, "Direct Graphene Transfer and Its Application to Transfer Printing Using Mechanically Controlled, Large-Area Graphene/Copper Freestanding Layer", Adv. Funct. Mater., 28, 1707102 (2018). 

  52. X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, "Competing Fracture in Kinetically Controlled Transfer Printing", Laungmuir, 23(25), 12555 (2007). 

  53. M. Deruelle, L. Leger, and M. Tirrell, "Adhesion at the Solid-Elastomer Interface: Influence of the Interfacial Chains", Macromolecules, 28, 7419 (1995). 

  54. R. Saeidpourazar, R. Li, Y. Li, M. D. Sangid, C. Lu, Y. Huang, J. A. Rogers, and P. M. Ferreira, "Laser-Driven Micro Transfer Placement of Prefabricated Microstructures", J. Microelectromech. Syst., 21(5), 1049 (2012). 

  55. M. K. Choi, I. Park, D. C. Kim, E. Joh, O. K. Park, J. Kim, M. Kim, C. Choi, J. Yang, K. W. Cho, J. H. Hwang, J. M. Nam, T. Hyeon, J. H. Kim, and D.-H. Kim, "Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System", Adv. Funct. Mater., 25, 7109 (2015). 

  56. R. Li, Q. Zhang, E. Zhao, J. Li, Q. Gu, and P. Gao, "Etchingand Intermediate-Free Graphene Dry Transfer onto Polymeric Thin Films with High Piezoresistive Gauge Factors", J. Mater. Chem., 7, 13032 (2019). 

  57. T. H. Kim, A. Carlson, J. H. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, "Kinetically Controlled, Adhesiveless Transfer Printing Using Microstructured Stamps", Appl. Phys. Lett., 94(11), 113502 (2009). 

  58. S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, "Microstructured Elastomeric Surfaces with Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing", Proc. Natl. Acad. Sci. U.S.A., 107(40), 17095 (2010). 

  59. A. Carlson, S. Wang, P. Elvikis, P. M. Ferreira, Y. Huang, and J. A. Rogers, "Active, Programmable, Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing", Adv. Funct. Mater., 22, 4476 (2012). 

  60. B. Yoo, S. Cho, S. Seo, and J. Lee, "Elastomeric Angled Microflaps with Reversible Adhesion for Transfer-Printing Semiconductor Membranes onto Dry Surfaces", ACS Appl. Mater. Interfaces., 6(21), 19247 (2014). 

  61. C. Linghu, C. Wang, N. Cen, J. Wu, Z. Lai, and J. Song, "Rapidly Tunable and Highly Reversible Bio-Inspired Dry Adhesion for Transfer Printing in Air and a Vacuum", Soft Matter, 15, 30 (2019). 

  62. K. Autumm, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, "Frictional Adhesion: a New Angle on Gecko Attachment", J. Exp. Biol., 209, 3569 (2006). 

  63. A. D. Lees and J. Hardie, "The Organs of Adhesion in the Aphid Megoura Viciae", J. Exp. Biol., 136, 209 (1988). 

  64. A. G. Evans, B. J. Dalgleish, M. He, and J. W. Hutchinson, "On Crack Path Selection and the Interface Fracture Energy in Bimaterial Systems", Acta Metall., 37(12), 3249 (1989). 

  65. A. G. Evans, M. Ruhle, B. J. Dalgleish, and P. G. Charalambides, "The Fracture Energy of Bimaterial Interfaces", Metall. Trans. A, 21(9), 2419 (1990). 

  66. A. Carlson, H. J. Kim-Lee, J. Wu, P. Elvikis, H. Cheng, A. Kovalsky, S. Elgan, Q. Yu, P. M. Ferreira, Y. Huang, K. T. Turner, and J. A. Rogers, "Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly", Appl. Phys. Lett., 98(26), 264104 (2011). 

  67. P. Sen, Y. Xiong, Q. Zhang, S. Park, W. You, H. Ade, M. W. Kudenov, and B. T. O'Connor, "Shear Enhanced Transfer Printing of Conducting Polymer Thin Films", ACS Appl. Mater. Interfaces., 10(37), 31560 (2018). 

  68. H. Cheng, J. Wu, Q. Yu, H. J. Kim-Lee, A. Carlson, K. T. Turner, K. C. Hwang, Y. Huang, and J. A. Rogers, "An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing", Mech. Res. Commun., 43, 46 (2012). 

  69. H. W. Jang and W. S. Kim, "Shear-Induced Dry Transfer of Reduced Graphene Oxide Thin Film via Roll-to-Roll Printing", Appl. Phys. Lett., 108(9), 091601 (2016). 

  70. X. Ma, Q. Liu, D. Xu, Y. Zhu, S. Kim, Y. Cui, L. Zhong, and M. Liu, "Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials", Nano Lett., 17(11), 6961 (2017). 

  71. G. J. M. Fechine, I. Martin-Frenandez, G. Yiapanis, R. Bentini, E. S. Kulkarni, R. V. Bof de Oliveria, X. Hu, I. Yarovsky, A. H. Castro Neto, and B. Ozyilmaz, "Direct Dry Transfer of Chemical Vapor Deposition Graphene to Polymeric Substrates", Carbon, 83, 224 (2015). 

  72. W. Jung, D. Kim, M. Lee, S. Kim, J. H. Kim, and C. S. Han, "Ultraconformal Contact Transfer of Monolayer Graphene on Metal to Various Substrates", Adv. Mater., 26, 6394 (2014). 

  73. J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana, and C. Dimitrakopoulos, "Layer-Resolved Graphene Transfer via Engineered Strain Layers", Science, 342, 833 (2013). 

  74. C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of Nanowire Electronics on Nonconventional Substrates by Water- Assisted Transfer Printing", Nano Lett., 11(8), 3435 (2011). 

  75. C. H. Lee, D. R. Kim, I. S. Cho, N. William, Q. Wang, and X. Zheng, "Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates", Sci. Rep., 2, 1000 (2012). 

  76. D. S. Wie, Y. Zhnag, M. K. Kim, B. Kim, S. Park, Y. J. Kim, P. P. Irazoqui, X. Zheng, B. Xu, and C. H. Lee, "Wafer-Recyclable, Environment-Friendly Transfer Printing for Large- Scale Thin-Film Nanoelectronics", Proc. Natl. Acad. Sci. U.S.A., 115(31), E9236 (2018). 

  77. P. Gupta, P. D. Dongare, S. Grover, S. Dubey, H. Mamgain, A. Bhattacharya, and M. M. Deshmukh, "A Facile Process for Soak-and-Peel Delamination of CVD Graphene from Substrates Using Water", Sci. Rep., 4, 3882 (2014). 

  78. B. N. Chandrashekar, B. Deng, A. S. Smitha, Y. Chen, C. Tan, H. Zhang, H. Peng, and Z. Liu, "Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexble Triboelectric Nanogenerator", Adv. Mater., 27, 5210 (2015). 

  79. A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, and L. Cao, "Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few- Layer MoS $_2$ Films onto Arbitrary Substrates", ACS Nano, 8(11), 11522 (2014). 

  80. S. M. Shinde, T. Das, A. T. Hoang, B. K. Sharma, X. Chen, and J. H. Ahn, "Surface-Functionalization-Mediated Direct Transfer of Molybdenum Disulfide for Large-Area Flexible Devices", Adv. Funct. Mater., 28, 1706231 (2018). 

  81. X. Yang, X. Li, Y. Deng, Y. Wang, G. Liu, C. Wei, H. Li, Z. Wu, Q. Zheng, Z. Chen, Q. Jiang, H. Lu, and J. Zhu, "Ethanol Assisted Transfer of Clean Assembly of 2D Building Blocks and Suspended Structures", Adv. Funct. Mater., 29, 1902427 (2019). 

  82. C. H. Lee, J. H. Kim, C. Zou, I. S. Cho, J. M. Weisse, W. Nemeth, Q. Wang, A. C. T. van Duin, T. S. Kim, and X. Zheng, "Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin Film Electronics", Sci. Rep., 3, 2917 (2013). 

  83. E. P. Guyer and R. H. Dauskardt, "Fracture of Nanoporous Thin-Film Glasses", Nat. Mater., 3, 53 (2004). 

  84. Y. Zhang, Q. Liu, and B. Xu, "Liquid-Assisted, Etching-Free, Mechanical Peeling of 2D Materials", Extreme Mech. Lett., 16, 33 (2017). 

  85. T. Yoon, J. H. Kim, J. H. Choi, D. Y. Jung, I. J. Park, S. Y. Choi, N. S. Cho, J. I. Lee, Y. D. Kwon, S. Cho, and T. S. Kim, "Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices", ACS Nano, 10(1), 1539 (2016). 

  86. J. D. Buron, D. H. Petersen, P. Boggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, "Graphene Conductance Uniformity Mapping", Nano Lett., 12(10), 5074 (2012). 

  87. T. Yoon, S. Kang, T. Y. Kang, and T. S. Kim, "Detection of Graphene Cracks by Electromagnetic Induction, Insensitive to Doping Level", Comput. Model. Eng. Sci., 120(2), 351 (2019). 

  88. A. Kamer, K. Larson-Smith, L. S. C. Pingree, and R. H. Dauskardt, "Adhesion and Degradation of Hard Coatings on Poly (Methyl Methacrylate) Substrates", Thin Solid Films, 519(6), 1907 (2011). 

  89. T. Yoon, W. S. Jo, and T. S. Kim, "High-Yield Etching-Free Transfer of Graphene: a Fracture Mechanics Approach", J. Microelectron. Packag. Soc., 21(2), 59 (2014). 

  90. J. Shim, S. H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J. H. Ahn, C. Hinkle, A. Ougazzaden, and J. Kim, "Controlled Crack Propagation for Atomic Precision Handling of Wafer-Scale Two-Dimensional Materials", Science, 362, 665 (2018). 

  91. S. Kang, T. Yoon, S. Kim, and T. S. Kim, "Role of Crack Deflection on Rate Dependent Mechanical Transfer of Multilayer Graphene and Its Application to Transparent Electrodes", ACS Appl. Nano Mater., 2(4), 1980 (2019). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로