$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] CFD 시뮬레이션을 활용한 원형 환기창의 자연환기 성능 평가
Evaluating Natural Ventilation Performance of the Circular Ventilation Window using CFD Simulation

대한건축학회논문집 = Journal of the architectural institute of korea, v.36 no.10, 2020년, pp.105 - 116  

최하늘 (연세대 대학원) ,  나후승 (연세대 대학원) ,  가서사 (연세대 대학원) ,  김형근 (연세대 대학원) ,  김나리 (브이에스에이 코리아 & 유블로) ,  김태연 (연세대 건축공학과)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to comprehensively evaluate the natural ventilation performance of the circular ventilation window. The circular ventilation window is a new type of window. This 145mm diameter window consists of a circular frame and a lid, and can be opened and closed. The circular vent...

주제어

참고문헌 (34)

  1. Allocca, C., Chen, Q., & Glicksman, L. R. (2003). Design analysis of single-sided natural ventilation. Energy and buildings, 35(8), 785-795. 

  2. Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158, 1429-1441. 

  3. Bangalee, M. Z. I., Lin, S. Y., & Miau, J. J. (2012). Wind driven natural ventilation through multiple windows of a building: A computational approach. Energy and Buildings, 45, 317-325. 

  4. Chen, Q. (2009). Ventilation performance prediction for buildings: A method overview and recent applications. Building and environment, 44(4), 848-858. 

  5. Cho, J., Yoo, C., & Kim, Y. (2012). Effective opening area and installation location of windows for single sided natural ventilation in high-rise residences. Journal of Asian Architecture and Building Engineering, 11(2), 391-398. 

  6. Castillo, J. A., Huelsz, G., van Hooff, T., & Blocken, B. (2019, June). Natural ventilation of an isolated generic building with a windward window and different windexchangers: CFD validation, sensitivity study and performance analysis. In Building Simulation (Vol. 12, No. 3, pp. 475-488). Tsinghua University Press. 

  7. Derakhshan, S., & Shaker, A. (2017). Numerical study of the cross-ventilation of an isolated building with different opening aspect ratios and locations for various wind directions. International Journal of Ventilation, 16(1), 42-60. 

  8. Favarolo, P. A., & Manz, H. (2005). Temperature-driven single-sided ventilation through a large rectangular opening. Building and Environment, 40(5), 689-699. 

  9. Gao, C. F., & Lee, W. L. (2011). Evaluating the influence of openings configuration on natural ventilation performance of residential units in Hong Kong. Building and environment, 46(4), 961-969. 

  10. Gilani, S., Montazeri, H., & Blocken, B. (2016). CFD simulation of stratified indoor environment in displacement ventilation: Validation and sensitivity analysis. Building and Environment, 95, 299-313. 

  11. Hong, I. P., Ki, H. S., Jung, E. Y., & Song, D. S. (2012). A Study on Inlet Flow Profile in CFD Simulation for Predicting Wind Environment in Urban Area. JOURNAL OF THE ARCHITECTURAL INSTITUTE OF KOREA Planning & Design, 28(1), 311-318. 

  12. Hajdukiewicz, M., Geron, M., & Keane, M. M. (2013). Formal calibration methodology for CFD models of naturally ventilated indoor environments. Building and Environment, 59, 290-302. 

  13. Hoxey, R. P., Richards, P. J., & Short, J. L. (2002). A 6 m cube in an atmospheric boundary layer flow-Part 1. Full-scale and wind-tunnel results. Wind and structures, 5(2_3_4), 165-176. 

  14. Kose, D. A., Fauconnier, D., & Dick, E. (2011). ILES of flow over low-rise buildings: Influence of inflow conditions on the quality of the mean pressure distribution prediction. Journal of Wind Engineering and Industrial Aerodynamics, 99(10), 1056-1068. 

  15. Kobayashi, T., Chikamoto, T., & Osada, K. (2013). Evaluation of ventilation performance of monitor roof in residential area based on simplified estimation and CFD analysis. Building and environment, 63, 20-30. 

  16. Kosutova, K., van Hooff, T., Vanderwel, C., Blocken, B., & Hensen, J. (2019). Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations. Building and Environment, 154, 263-280. 

  17. Liu, T., & Lee, W. L. (2020). Influence of window opening degree on natural ventilation performance of residential buildings in Hong Kong. Science and Technology for the Built Environment, 26(1), 28-41. 

  18. Muehleisen, R. T., & Patrizi, S. (2013). A new parametric equation for the wind pressure coefficient for low-rise buildings. Energy and Buildings, 57, 245-249. 

  19. Na, H., Choi, H., Lee, K., Park, K., Kim, N., & Kim, T. (2018). Analysis of performance for circular type ventilation device attached in the window by tracer gas method. Proceeding of Annual Conference of the Architectural Institute of Korea, 38(1), 448-449. 

  20. No, S. T., & Kim, K. S. (2005). A Study on the Characteristics of Natural Airflow Through Single-sided Openings with Variable Position and Geometry. JOURNAL OF THE ARCHITECTURAL INSTITUTE OF KOREA Planning & Design, 21(8), 227-234. 

  21. Park, D., & Battaglia, F. (2015, April). Effect of heat loads and ambient conditions on thermal comfort for single-sided ventilation. In Building Simulation (Vol. 8, No. 2, pp. 167-178). Tsinghua University Press. 

  22. Park, J., Sun, X., Choi, J. I., & Rhee, G. H. (2017). Effect of wind and buoyancy interaction on single-sided ventilation in a building. Journal of Wind Engineering and Industrial Aerodynamics, 171, 380-389. 

  23. Peren, J. I., Van Hooff, T., Leite, B. C. C., & Blocken, B. (2015). CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: impact of roof angle and opening location. Building and Environment, 85, 263-276. 

  24. Ramponi, R., & Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Building and Environment, 53, 34-48. 

  25. SeppEnen, O. (2008). Ventilation strategies for good indoor air quality and energy efficiency. International Journal of Ventilation, 6(4), 297-306. 

  26. Um, C. Y., Choi, H., Na, H., Lee, K., Park, H., & Kim, T. (2018). Analysis of Ventilation Performance for Circular Type Ventilation Device Attached to the Window. Proceeding of Annual Conference of the Korea Institute of Ecological Architecture and Environment, 18(2), 143-143. 

  27. Visagavel, K., & Srinivasan, P. S. S. (2009). Analysis of single side ventilated and cross ventilated rooms by varying the width of the window opening using CFD. Solar Energy, 83(1), 2-5. 

  28. Wang, J., Wang, S., Zhang, T., & Battaglia, F. (2017). Assessment of single-sided natural ventilation driven by buoyancy forces through variable window configurations. Energy and buildings, 139, 762-779. 

  29. Wang, J., Zhang, T., Wang, S., & Battaglia, F. (2018). Numerical investigation of single-sided natural ventilation driven by buoyancy and wind through variable window configurations. Energy and Buildings, 168, 147-164. 

  30. Wang, H., & Chen, Q. (2012). A new empirical model for predicting single-sided, wind-driven natural ventilation in buildings. Energy and Buildings, 54, 386-394. 

  31. Yoon, N., Han, J. M., & Malkawi, A. (2019). Finding the Optimum Window Locations of a Single Zone: To Maximize the Wind-Driven Natural Ventilation Potential. In Proceedings of the 16th International Building Performance Simulation Association Conference (pp. 578-584). IBPSA Rome, Italy. 

  32. Yi, Y. (2020). [Consecutive Articles] Architecture thoughts (7) Facade development and atypical design. News & Information for Chemical Engineers, 38(3), 336-339. 

  33. Zhang, Z., Zhang, W., Zhai, Z. J., & Chen, Q. Y. (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2-Comparison with experimental data from literature. Hvac&R Research, 13(6), 871-886. 

  34. Zhai, Z. J., Johnson, M. H., & Krarti, M. (2011). Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy and Buildings, 43(9), 2251-2261. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로