$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

도심항공 모빌리티(UAM) 적용에 필요한 효율, 신뢰성, 안전성, 소음, 배기가스, 성능 및 인증의 요구도 분석

Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM)

초록

본 논문에서는 대도시 교통체증을 해결하기 위한 새로운 개념인 도심항공 모빌리티 (UAM; urban air mobility) 실현을 위해 필요한 요구도 분석을 수행하였다. 우선 UAM과 관련된 국내외 연구 개발 현황에 대해 살펴보았으며 상용화 준비 중인 다양한 형상의 비행체에 대해 장단점 및 임무 반경별 소요시간에대한 요구조건을 분석하였다. 또한, UAM의 시장 수용성을 분석하기 위해, 개인의 의식 및 신뢰성에 관한 요구조건을 파악하고, 항공기 유형별 사고율 데이터를 통해 안전성 요구 조건을 분석하였다. 인구가 밀집된 도심 지역에서 운용하기 때문에, 지역사회에 영향을 끼칠 수 있는 환경적 요인인 소음과 배기가스에 대해서요구조건 분석을 수행하였고, 항공기 성능과 관련된 요구조건과 인증 기준 및 FAA와 EASA의 감항기술기준에 대해서도 분석하였다.

Abstract

In this paper, we analyzed the requirements for the application of UAM, a new concept to solve the traffic congestion in large cities. First, the current domestic and foreign status of research and development related to UAM was investigated and the pros and cons and the time required for each mission radius were analyzed for various configurations of aircraft being commercialized. In addition, in order to analyze the market acceptance of the UAM, the individual's consciousness and reliability requirements were identified and safety requirements were analyzed through accident rate data for each aircraft type. Because it operates in a densely populated urban area, requirement analyses on noise and exhaust, which are environmental factors that can affect the community were performed, and requirements related to aircraft performance, certification standards, and airworthiness standards of FAA and EASA were also analyzed.

표 / 그림 (23)

저자의 다른 논문

참고문헌 (34)

  1. 1. S. K. Lee et. al, Study on the improvement of aircraft noise evaluation unit and measurement method, Seoul National University Research Center for Environmental Noise and Vibration, 2016. 
  2. 2. K. B. Kim, Comparison and correlation analysis of aircraft noise assessment units, Masters dissertation, Seoul National University, Korea, August 2017. 
  3. 3. Aviation today, Uber's Plan to Take Ridesharing to the skies, [Internet]. Available: https://www.aviationtoday.com/2018/07/03/ubers-plan-take-ridesharing-skies/. 
  4. 4. Aviation today, NASA Launches Urban Air Mobility Grand Challenge Program, [Internet]. Available: https://www.aviationtoday.com/2019/08/30/nasa-launches-uam-grand-challenge-program-accelerate-operational-maturity/. 
  5. 5. Hyundai Motor Group, [Internet]. Available: https://tech.hyundaimotorgroup.com/kr/tag/uam/. 
  6. 6. B. S. Lee, J. Y. Yun, and H. Y. Hwang, "Flight range and time analysis for classification of eVTOL PAV," Journal of Advanced Navigation Technology, Vol. 24, No. 2, pp. 73-84, 2020. 
  7. 7. EVTOL, NTSB shares more details on crash of Boeing PAV prototype, [Internet]. Available: https://evtol.com/news/ntsb-shares-details-boeing-pav-crash/. 
  8. 8. Airbus, [Internet]. Available: https://www.airbus.com/innovation/zero-emission/urban-air-mobility/vahana.html. 
  9. 9. FAA, Electronic code of federal regulations, [Internet]. Available: https://www.ecfr.gov/cgi-bin/text-idx?cecfr&SID3ff035e46386a527ed21813cb6ff9147&rgndiv8&view text&node14:2.0.1.3.10.2.4.10&idno14. 
  10. 10. Volocopter, [Internet]. Available: https://www.volocopter.com/en/product/. 
  11. 11. K. Chrzan and B. Orme, An overview and comparison of design strategies for choice-based conjoint analysis, Sawtooth Software, Research Paper Series, WA 98382(360), 2000. 
  12. 12. F. Mengying, R. Rothfeld, and C. Antoniou, "Exploring preferences for transportation modes in an urban air mobility environment: munich case study," Journal of the Transportation Research Board, Vol. 2673, No. 10, pp. 427-442, May, 2019. 
  13. 13. CAP 780, Aviation safety review, Safety Regulation Group, November, 2008. 
  14. 14. AMC RPAS.1309 Issue2, Joint authorities of rule making of unmanned systems, Safety Assessment of Remotely Piloted Aircraft Systems, November, 2015. 
  15. 15. I. K. Ahn, "A study of the safety design requirements for a personal air vehicle," in The Society for Aerospace System Engineering, SASE 2018 Spring Conference, Jeju: Korea, pp. 360-363, 2018. 
  16. 16. Uber Elevate, Fast-forwarding to a future of on-demand urban air transportation, October, 2016. 
  17. 17. K. B. Kim, B. H. Lee, and P. M. Park, "Technology trends on the electric propulsion system for aircraft," Current Industrial and Technological Trends in Aerospace, Vol. 14, No. 1, pp. 70-82, 2016. 
  18. 18. R. Colleen, B. Frank, M. Christian, S, Joel, and C. Adam, An assessment of the potential weather barriers of urban air mobility (UAM), US Berkeley Transportation Sustainability Research Center, 2018. 
  19. 19. J. W. Choi and C. Kahng, "Introduction of noise characteristics and certification standard for rotorcraft," Journal of Aviation Development of Korea, Vol. 55, No. 3, pp. 123-135, 2010. 
  20. 20. E. Boeker and G. Fleming, "Functional description of the FAA's aviation environmental design tool's aircraft acoustiic module," in Institute of Noise Control Engineering, Noise Control Engineering National Conference 23rd, pp. 311-316, Michigan: MI, July, 2008. 
  21. 21. E. H. Lim and H. Y. Hwang, "Noise analysis of new runway at the Gimhae international airport using aviation environmental design tool(AEDT)," Journal of Advanced Navigation Technology, Vol. 22, No. 5, pp. 343-350, 2018. 
  22. 22. S. J. Oh, G. J. Lee, and S. H. Nah, "Aerodynamic design and aviation procedure considering global warming," The Korean Society for Aeronautical & Space Sciences, Vol. 2010, No.1, pp. 387-390, 2010. 
  23. 23. D. Joe, M. Mohammed, Aviation environmental design tool - technical manual version 2d, Federal Aviation Administration, MA, OBM, No. 0704-0188, Sept, 2017. 
  24. 24. ICAO, ICAO Environmental Meeting Commits To a CO2 Standard (2010, February), International Civil Aviation Organization, [Internet]. Available: http://icaopressroom.wordpress.com/2010/02/19/icao-environmental-meeeting-commits-to-a-co2-standard. 
  25. 25. H. J. Joo, H. Y. Hwang, B. W. Park, and D. W. Lim, "Aircraft emission and fuel burn estimation due to changes of payload and range," Journal of Advanced Navigation Technology, Vol. 19, No. 4, pp. 278-287, Aug. 2015. 
  26. 26. R. Cointin, Aviation environmental tools suite overview and integration, Federal Aviation Administration, Aviation Environmental Tools Colloquium, Dec 2010. 
  27. 27. M. Kirby, K. Becker, S. Isley, G. Burdette, and D. Mavris, "Development of an interactive capability to tradeoff new technologies and future aircraft to reduce aviation environmental impacts", in Proceedings of the 27th Congress of the International Council of the Aeronautical Sciences, Vol.4, Nice: France, pp. 1-12, Sep. 2010. 
  28. 28. K. Jonathan, A. Meghan, B. Eric, H. Andrew, S. J. Hwang, M. Andrew, S. David, S. G. Barberio, D. Eric, Y. Michael, H. Clifford and M.. Jim, Aviation environmental design tool(AEDT) technical manual version 2a, U.S. Department of Transportation and FAA(Federal Aviation Administration), DOT-VNTSC-FAA-12-09, Jan, 2014. 
  29. 29. C. J. Eyers, P. Norman, J. Middle, M. Plohr, S. Michot, K. Atkinson, and R. A. Christou, AERO2k global aviation emissions inventories for 2002 and 2025, Institute of Propulsion Technology, Koln-Porz: German, QinetiQ Report/04/001113, December, 2004. 
  30. 30. Office of Energy Efficiency & Renewable Energy, Battery 500: Progress Updated, [Internet]. Available: https://www.energy.gov/eere/articles/battery500-progress-update. 
  31. 31. Porsche Consulting, The future of vertical mobility, A Porsche Consulting study, San Francisco, October, 2018. 
  32. 32. EASA, Part 21 Light: Simple and proportionate rules for small aircraft manufacturers, eVTOL International Standards Workshop, Brussels, Belgium, April, 2019. 
  33. 33. J. W. Choi and C. J. Hwang, "Status and approach on certification basis of eVTOL for urban air mobility," The Korean Society for Aeronautical & Space Sciences, Vol.2019, No.1, pp. 621-622, 2019. 
  34. 34. EASA, Special condition for small-category VTOL aircraft, European Union Aviation Safety Agency, SC-VTOL-01, July, 2019. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답