• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

패션 트렌트(2010~2019)의 주요 요소로서 소재 - 텍스트마이닝을 통한 분석

Material as a Key Element of Fashion Trend in 2010~2019 - Text Mining Analysis -


Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.

저자의 다른 논문

참고문헌 (32)

  1. 1. An, H. S., & Park, M. J. (2017). A study on the user perception in fashion design through social media text-mining. Journal of the Korean Society of Clothing and Textiles, 41(6), 1060-1070. doi:10.5850/jksct.2017.41.6.1060 
  2. 2. An, J. Y., Ahn, K. B., & Song, M. (2016). Text mining driven content analysis of ebola on news media and scientific publications. Journal of the Korean Library and Information Science Society, 50(2), 289-307. doi:10.4275/kslis.2016.50.2.289 
  3. 3. Bae, S. J. (2011). An analysis on the color trend of street fashion in Dalian, China(paper no. 2) - Focused on 2010 winter, compare with the Chinese traditional color preference. Journal of Fashion Business, 15(5), 161-177. doi:10.12940/jfb.2011.15.5.161 
  4. 4. Baek, M. Y., & Kim, Y. K. (2009). A study on the characteristic of domestic fashion color trend. Journal of The Korean Society of Fashion Design, 9(2), 75-88. 
  5. 5. Choi, Y. H., & Lee, K. H. (2020a). Ethical fashion research trend using text mining: Network analysis of the published literature 2009-2019. Fashion & Textile Research Journal, 22(2), 181-191. doi:10.5805/sfti.2020.22.2.181 
  6. 6. Choi, Y. H., & Lee, K. H. (2020b). Korean consumers’ political consumption of Japanese fashion products. Journal of the Korean Society of Clothing and Textiles, 44(2), 295-309. doi:10.5850/JKSCT.2020.44.2.295 
  7. 7. Dimmick, J., Chen, Y., & Li, Z. (2004). Competition between the internet and traditional news media - The gratification-opportunities niche dimension. The Journal of Media Economic, 17(1), 19-33. doi:10.1207/s15327736me1701_2 
  8. 8. Getman, R., Green, D., Bala, K., Mall, U., Rawat, N., Appasamy, S., & Hariharan, B. (2020). Machine learning(ML) for tracking fashion trends: Documenting the frequency of the baseball cap on social media and the runway. Clothing and Textiles Research Journal, 1-16. doi:10.1177/0887302X20931195 
  9. 9. Han, K. H. (2019). A study on the consumer’s perception of HiSeoul fashion show using big data analysis. Journal of Fashion Business, 23(5), 81-95. doi:10.12940/jfb.2019.23.5.81 
  10. 10. Hinssen, P. (2014). The new normal (Y. J. Lee, Trans.). Seoul: Next Wave. (Original work published 2010) 
  11. 11. Jang, N. K., & Kim, M. J. (2017). Research trend analysis in fashion design studies in Korea using topic modeling. Journal of Digital Convergence, 15(6), 415-423. doi:10.14400/JDC.2017.15.6.415 
  12. 12. Jo, J. H., Chung, Y. T., Choi, S. W., & Ok, C. S. (2018). Unstructured data quantification scheme based on text mining for user feedback extraction. Journal of Society of Korea Industrial and Systems Engineering, 41(4), 131-137. doi:10.11627/jkise.2018.41.4.131 
  13. 13. Jung, H. (2018). A study on the megatrend of Korean fashion industry in the new normal era. Journal of Basic Design & Art, 19(4), 391-404. 
  14. 14. Kim, J. S. (2018). A study on the perception of fashion streaming service using text mining analysis - Focused on PROJECT ANNE-. Journal of Fashion Design, 18(1), 107-118. doi:10.18652/2018.18.1.7 
  15. 15. Kim, D. J., & Lee, S. H. (2019). A study of consumer perception on fashion show using big data analysis. Journal of Fashion Business, 23(3), 85-100. doi:10.12940/jfb.2019.23.3.85 
  16. 16. Ko, H. S., Lee, J. Y., & Lee, Y. H. (2017). Fashion trend acceptance and fabric planning in Dongdaemoon fabric market. The Research Journal of the Costume Culture, 25(6), 773-786. doi:10.29049/rjcc.2017.25.6.773 
  17. 17. Lee, E. J. (2011). Dialectical interpretation of the affect of globali- zation on twenty-first century fashion trends -Super-historicism and syncretics. Journal of the Korean Society of Fashion Design, 11(4), 41-59. 
  18. 18. Lee, M. S. (2018). Dailiness in fashion - Focused on normcore, gorpcore, menocore. Journal of Korea Design Forum, 23(4), 19-30. doi:10.21326/ksdt.2018.23.4.002 
  19. 19. Lee, Y. M., & Chung, S. H. (2009). An analysis of trend acceptance of clothing items at an internet shopping mall specializing in fashion - Focusing on 08 S/S season. Journal of Fashion Business, 13(4), 85-98. 
  20. 20. Lin, Y., Zhou, Y., & Xu, H. (2015). Text-generated fashion influence model: An empirical study on style.com. Proceedings of the 48th Hawaii International Conference on System Sciences (pp. 3642-3650). IEEE. doi:10.1109/hicss.2015.438 
  21. 21. Minner, S., & Kiesmuller, G. P. (2012). Dynamic product aquisition in closed loop supply chains. International Journal of Production Research, 50(11), 2836-2851. doi:10.1080/00207543.2010.539280 
  22. 22. Noh, G. H., & Lee, G. H. (2002). An analysis on the fashion trend acceptance through the consumer wearing styles. Fashion & Textile Research Journal, 4(5), 465-472. 
  23. 23. Park, J. S., & Lee, Y. R. (2014). Exploring fashion trends using network snalysis. Journal of the Korean Society of Clothing and Textiles, 38(5), 611-626. doi:10.5850/JKSCT.2014.38.5.611 
  24. 24. Shin, S. H., & Ryoo, S. H. (2005). The effects of self-esteem and body cathexis on the acceptance of fashion trends. The Research Journal of the Costume Culture, 13(2), 280-288. 
  25. 25. Sung, K. S. (2020). Research on the reaction to newtro fashion through social media. A Treatise on The Plastic Media, 23(2), 10-18. doi:10.35280/kotpm.2020.23.2.2 
  26. 26. Tan, A. (1999). Text mining: The state of the art and the challenges. Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, pp. 65-70. 
  27. 27. Tian, Y., Zhang, Z., Yu, Y., Liu, X., & Huang, H. (2019). The construction of visual cognitive decision-making platform with user insight and the fashion trend in the era of big data. Proceedings IOP Conference Series: Materials Science and Engineering (Vol. 520, No. 1, p. 012012). IOP Publishing. doi:10.1088/1757-899X/520/1/012012 
  28. 28. Way, E. (2018). Fabric in fashion. The museun at FIT. Retrieved June 01, 2020 from http://www.fitnyc.edu/museum/documents/fabric-in-fashion-brochure.pdf 
  29. 29. Yang, Y. J., & Kim, M. H. (2019). Comparative study of street fashion in Seoul and Paris from the perspective of accepting trend forecast information. Journal of Cultural Product & Design, 58, 155-172. doi:10.18555/kicpd.2019.58.15 
  30. 30. Yun, E. Y. (2017). A study on the big data utilization in domestic fashion industry. Journal of Cultural Product & Design, 50, 191-200. doi:10.18555/kicpd.2017.50.17 
  31. 31. Yun, J. S., & Kim, S. J. (2015). A study on the analysis of fashion fabric trend and the acceptance by collection - Focus on domestic and international collections in 2007 S/S - 2010 S/S-. Fashion & Textile Research Journal, 17(5), 704-717. doi:10.5805/sfti.2015.17.5.704 
  32. 32. Zhao, L., & Min, C. (2019). The rise of fashion informatics: A case of data-mining-based social network analysis in fashion. Clothing and Textiles Research Journal, 37(2), 87-102. doi:10.1177/0887302x18821187 

DOI 인용 스타일

"" 핵심어 질의응답