$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

밀에서 질소 시비 조건에 따른 생육 단계별 초분광 특성 변화
Changes in the Hyperspectral Characteristics of Wheat Plants According to N Top-dressing Rates at Various Growth Stages 원문보기

Korean journal of crop science = 韓國作物學會誌, v.65 no.4, 2020년, pp.377 - 385  

정재경 (국립 경상대학교 농학과) ,  이영훈 (국립 경상대학교 농학과) ,  최재은 (국립 경상대학교 농학과) ,  송기은 (국립 경상대학교 응용생명과학부 BK21+ 프로그램) ,  고종한 (국립 전남대학교 응용식물학과) ,  이경도 (농촌진흥청 국립농업과학원 농업환경부) ,  심상인 (국립 경상대학교 농학과)

초록
AI-Helper 아이콘AI-Helper

적절한 질소 시비는 작물에 초형을 개선하는 한편, 엽록소 유지에도 도움을 주어 엽노화를 억제하고 광합성도 증대시켰다. 드론을 활용해 얻어진 잎의 RGB 값은 4월 29일에서 추비량 증가에 따라 RGB 값의 뚜렷한 차이를 나타내 단순한 엽색 분석도 작물의 생리적 상태 평가에 활용할 수 있음을 보여주었다. 휴대용 측정기를 이용한 실험에서 추비 조건에 따른 NDVI와 SPAD 값은 3월 19일에 큰 차이 확인할 수 없었다. 그러나 초분광카메라를 통한 분석에서 추비량 증대에 따라 780 nm보다 큰 파장대인 NIR 영역에서 반사율 증가가 확인되었다. 이는 시비 효과가 명확히 드러나지 않는 생육 초반에도 초분광카메라 활용해 작물 상태를 진단할 수 있음을 보여준다. 포장에서 추비 수준이 낮을수록 4월 29일에는 가시광선 영역의 반사율이 증가하고, NIR 영역의 감소가 확인되어 시비에 따른 영향을 확인할 수 있었다. 초분광카메라를 이용한 식생지수 확인으로 엽록소 함량, 질소 부족 정도, 광합성 상태 분석에 근거한 시비 효과 평가가 가능하였다.

Abstract AI-Helper 아이콘AI-Helper

Recently, wheat consumption has been increasing in Korea, requiring increased production. Nitrogen fertilization is a critical determinant in crop yield; therefore, it is necessary to optimize the nitrogen fertilization regime with current trends that emphasize the minimum impact of nitrogen fertili...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 특히 국내에서 밀 재배에 관련되어 질소 시비와 초분광 특성간의 관계에 대한 연구는 전무하다. 본 연구는 밀의 질소 추비 조건에 따른 생육 단계별 분광학적 특성 변화를 확인하여 적절한 시비 조건을 구명하고, 더불어 주요 생육 특성에 어떠한 영향을 주는지를 초분광 영상 데이터에서 추출된 다양한 식생지수에 근거하여 확인하고자 수행하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (53)

  1. Amanullah, K., B. Marwat, P. Shah, N. Maula, and S. Arifullah. 2009. Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot. 41 : 761-768. 

  2. Ashourloo, D., M. R. Mobasheri, and A. Huete. 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote. Sens. 6 : 5107-5123. 

  3. Behmann, J., J. Steinrucken, and Lutz. Plumer, P. 2014. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93 : 98-111. 

  4. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB Imaging. Remote. Sens. 6 : 10395-10412. 

  5. Birth, G. S. and G. R. McVey. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. J. Agron. 60 : 640-643. 

  6. Blackburn, G. A. 1999. Relationship between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote. Sens. Environ. 70 : 224-237. 

  7. Calderon, R., J. A. Navas-Cortes, C. Lucena, and P. J. Zarco-Tejada. 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote. Sens. Environ. 139 : 231-245. 

  8. Cao, X., Y. Luo, Y. Zhou, J. Fan, X. Xu, J. S. West, X. Xiayu, and D. Cheng. 2015. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS One. 10 : 1-14. 

  9. Carter, G. A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80 : 239-243. 

  10. Cho, S. W., C. S. Kang, T. G. Kang, K. M. Cho, and C. S. Park. 2018. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 17 : 982-993. 

  11. Darvishzadeh, R., A. Skidmore, C. Atzberger, and S. V. Wieren. 2008. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth. OBS. 10 : 358-373. 

  12. Datt, B. 1999. A New reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J. Plant. Physiol. 154 : 30-36. 

  13. FAO. 2020. Food outlook - Biannual report on global food markets. pp. 11-16. 

  14. Feng, W., X. Yao, Y. Zhu, Y. C. Tian, and W. X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28 : 394-404. 

  15. Filella, I., L. Serrano, J. Serra, and J. Penuelas. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop. Sci. 35 : 1400-1405. 

  16. Fritschi, F.B. and J. D. Ray. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 45 : 92-98. 

  17. Gamon, J. A., J. Penuelas, and C. B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 41 : 35-44. 

  18. Gitelson, A. and M. N. Merzlyak. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J. Plant. Physiol. 143 : 286-292. 

  19. Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote. Sens. Environ. 58 : 289-298. 

  20. Gitelson, A. A. and M. N. Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space. Res. 22 : 689-692. 

  21. Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 160 : 271-282. 

  22. Goetz, A. F. H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote. Sens. Environ. 113 : S5-S16. 

  23. Han, L., G. Yang, H. Dai, B. Xu, H. Yang, H. Feng, Z. Li, and X. Yang. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 15 : 10. 

  24. Ivushkin, K., H. Bartholomeus, A. K. Bregt, A. Pulatov, H. D. Franceschini, H. Kramer, E. N. van Loo, V. J. Roman, and R. Finkers. 2018. UAV based soil salinity assessment of cropland. Geoderma. 338 : 502-512. 

  25. Kong, L., Y. Xie, L. Hu, J. Si, and Z. Wang. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7 : 43363. 

  26. KOSTAT. 2020. 2019 Food Grain Consumption Survey. pp. 17-30. 

  27. Lelong, C. C. D., P. C. Pinet, and H. Poilve. 1998. Hyperspectral imaging and stress mapping in agriculture. Remote. Sens. Environ. 66 : 179-191. 

  28. Li, F., Y. Miao, S. D. Hennig, M. L. Gnyp, X. Chen, L. Jia, and G. Bareth. 2010. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11 : 335-357. 

  29. Li, B., X. Xu, J. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods. 15 : 15. 

  30. Luo, L., Y. Zhang, and G. Xu. 2020. How does nitrogen shape plant architecture? J. Exp. Bot. 71 : 4415-4427. 

  31. Mahlein, A. K., U. Steiner, H. W. Dehne, and E. C. Oerke. 2010. Spectral signature of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11 : 413-431. 

  32. McKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140 : 315-322. 

  33. Merzlyak, M. N., A. A. Gitelson, O. B. Chivkunova, and V. Y. Rakitin. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106 : 135-141. 

  34. Mishra, P., M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders. 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 164 : 49-67. 

  35. Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69 : 1376-1381. 

  36. Nebiker, S., M. Abacherli, N. Lack, and S. Laderach. 2016. Lightweight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 963-970. 

  37. Netto, A. T., E. Campostrini, J. G. de. Oliveira, and R. E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104 : 199-209. 

  38. Nutter, F. W. 1989. Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathol. 79 : 958-963. 

  39. Penuelas, J., B. Frederic, and I. Filella. 1995. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica. 31 : 221-230. 

  40. Penuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends. Plant. Sci. 3 : 151-156. 

  41. Reyniers, M., D. J. J. Walvoort, and J. De Baardemaaker, 2006. A linear model to predict with a multi­spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote. Sens. 27 : 4159-4179. 

  42. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Proc. Third ERTS Symposium. NASA SP-351. 1 : 301-317. 

  43. Rumpf, T., A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, and L. Plumer. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Compute. Electron. Agric. 74 : 91-99. 

  44. Siegal, B. S. and A. F. H. Goetz. 1977. Effect of vegetation on rock and soil type discrimination, Photogramm. Eng. Rem. S. 43 : 191-196. 

  45. Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 81 : 337-354. 

  46. Vogelmann, J. E., B. N. Rock, and D. M. MOSS, 1993. Red edge spectral measurements from sugar maple leaves. Int. J. Remote. Sens. 14 : 1563-1575. 

  47. Wijitdechakul, J., S. Sasaki, Y. Kiyoki, and C. Koopipat. 2016. UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management. International Electronics Symposium (IES). pp. 459-464. 

  48. Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest. Meterol. 148 : 1230-1241. 

  49. Xingyun, L., T. Zhang, X. Lu, D. S. Ellsworth, H. BassiriRad, C. You, D. Wang, P. He, Q. Deng, H. Liu, J. Mo, and Q. Ye. 2019. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 26 : 3585-3600. 

  50. Xu, J., H. Cai, X. Wang, C. Ma, Y. Lu, Y. Ding, X. Wang, H. Chen, Y. Wang, and Q. Saddique. 2019. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water. Manag. 228 : 105904. 

  51. Zarco-Tejada, P. J., V. Gonzalez-Dugo, and J. A. Berni. 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote. Sens. Environ. 117 : 322-337. 

  52. Zhang, L., Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, and X. Peng. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant. Sci. 10 : 1-18. 

  53. Zheng, T., P. F. Qi, Y. L. Cao, Y. N. Han, H. L. Ma, Z. R. Guo, Y. Wang, Y. Y. Qiao, S. Y. Hua, H. Y. Yu, J. P. Wang, J. Zhu, C. Y. Zhou, Y. Z. Zhang, Q. Chen, L. Kong, J. R. Wang, Q. T. Jiang, Z. H. Yan, X. J. Lan, G. Q. Fan, Y. M. Wei, and Y. L. Zheng. 2018. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 8 : 11928. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로