$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox 원문보기

Journal of microbiology and biotechnology, v.30 no.11, 2020년, pp.1785 - 1791  

Cho, Dae-Hyun (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Cho, Kichul (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) ,  Heo, Jina (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Kim, Urim (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Lee, Yong Jae (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Choi, Dong-Yun (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Yoo, Chan (Department of Chemical and Biomolecular Engineering, KAIST) ,  Kim, Hee-Sik (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ,  Bae, Seunghee (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)

Abstract AI-Helper 아이콘AI-Helper

In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To overcome this problem, many studies have focused on enhancing algal biomass and metabolite productivity. These studies encompass genetic engineering of selected microalgae, stress induction, the construction of new cultivation apparatus such as the photobioreactor, and the hybrid operation of raceway open pond systems [2, 4-6]. Furthermore, the polyculture of varying microalgal species in the same cultivation apparatus has also been conducted to cope with the limitations of established mono-algal culture systems.
  • To verify which environmental factors affect algal succession in the open pond mass cultivation system of the modified algal polyculture, different light intensities, temperatures, and CO2 concentrations were evaluated in this study.
  • In this study, the changes in PCS under different temperatures and light intensities in air or CO2 conditions were investigated using the PhotoBiobox. The results revealed that atmospheric CO2 concentration can affect the environmental adaptation of microalgae.

대상 데이터

  • under different temperatures and light intensities in the 5% CO2 condition. Experiment was performed in triplicate (n = 3).

데이터처리

  • Pearson’s correlation analysis was performed using SPSS 18.0 software (SPSS Inc., USA) to determine the relationship between PCS composition and different environmental conditions (temperature and light intensity).
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. 1 Bilal M Rasheed T Ahmed I Iqbal HMN 2017 High-value compounds from microalgae with industrial exploitability - a review Front. Biosci. (Schol Ed) 9 319 342 10.2741/s490 28410122 

  2. 2 Ramanan R Kim BH Cho DH Oh HM Kim HS 2016 Algae-bacteria interactions: Evolution, ecology and emerging applications Biotechnol. Adv. 34 14 29 10.1016/j.biotechadv.2015.12.003 26657897 

  3. 3 Chisti Y 2007 Biodiesel from microalgae Biotechnol. Adv. 25 294 306 10.1016/j.biotechadv.2007.02.001 17350212 

  4. 4 Yun JH Cho DH Lee S Heo J Tran QG Chang YK 2018 Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of targ et al gal species and algal biomass production Algal. Res. 29 319 329 10.1016/j.algal.2017.11.037 

  5. 5 Radakovits R Jinkerson RE Darzins A Posewitz MC 2010 Genetic engineering of algae for enhanced biofuel production Eukaryot. Cell 9 486 501 10.1128/EC.00364-09 20139239 

  6. 6 Markou G Nerantzis E 2013 Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions Biotechnol. Adv. 31 1532 1542 10.1016/j.biotechadv.2013.07.011 23928208 

  7. 7 Novoveska L Franks DT Wulfers TA Henley WJ 2016 Stabilizing continuous mixed cultures of microalgae Algal Res. 13 126 133 10.1016/j.algal.2015.11.021 

  8. 8 Shu CH Tsai CC Liao WH Chen KY Huang HC 2012 Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp and Saccharomyces cerevisiae J. Chem. Technol. Biotechnol. 87 601 607 10.1002/jctb.2750 

  9. 9 Heo J Cho DH Ramanan R Oh HM Kim HS 2015 PhotoBiobox: a tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO 2 sequestration Biochem. Eng. J. 103 193 197 10.1016/j.bej.2015.07.013 

  10. 10 Cho DH Choi JW Kang Z Kim BH Oh HM Kim HS 2017 Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater Sci. Rep. 7 1 11 10.1038/s41598-017-02139-8 28127051 

  11. 11 Cho DH Ramanan R Kim BH Lee J Kim S Yoo C 2013 Novel approach for the development of axenic microalgal cultures from environmental samples J. Phycol. 49 802 810 10.1111/jpy.12091 27007211 

  12. 12 Stanier RY Kunisawa R Mandel M Cohen-Bazire G 1971 Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol. Rev. 35 171 205 10.1128/MMBR.35.2.171-205.1971 4998365 

  13. 13 Hillebrand H Durselen CD Kirschtel D Pollingher U Zohary T 1999 Biovolume calculation for pelagic and benthic microalgae J. Phycol. 35 403 424 10.1046/j.1529-8817.1999.3520403.x 

  14. 14 Cho DH Ramanan R Heo J Kang Z Kim BH Ahn CY 2015 Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater Bioresour. Technol. 191 481 487 10.1016/j.biortech.2015.02.013 25746593 

  15. 15 Olofsson M Karlberg M Lage S Ploug H 2017 Phytoplankton community composition and primary production in the tropical tidal ecosystem, Maputo Bay (the Indian Ocean) J. Sea Res. 125 18 25 10.1016/j.seares.2017.05.007 

  16. 16 Park JBK Craggs RJ Shilton AN 2011 Recycling algae to improve species control and harvest efficiency from a high rate algal pond Water Res. 45 6637 6649 10.1016/j.watres.2011.09.042 22048019 

  17. 17 Olenina I Hajdu S Edler L Andersson A 2006 Biovolumes and sizeclasses of phytoplankton in the Baltic Sea HELCOM Baltic Sea Environ. Proc. 106 1 144 

  18. 18 Chinnasamy S Ramakrishnan B Bhatnagar A Das KC 2009 Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO 2 and temperature Int. J. Mol. Sci. 10 518 532 10.3390/ijms10020518 19333419 

  19. 19 Beardall J Raven JA 2004 The potential effects of global climate change on microalgal photosynthesis, growth and ecology Phycologia 43 26 40 10.2216/i0031-8884-43-1-26.1 

  20. 20 Beardall J Quigg A Raven JA 2003 Oxygen Consumption: Photorespiration and Chlororespiration Photosynthesis in Algae 157 181 10.1007/978-94-007-1038-2_8 

  21. 21 Raven JA Kubler JE Beardall J 2000 Put out the light, and then put out the light J. Mar. Biol. Assoc. UK 80 1 25 10.1017/S0025315499001526 

  22. 22 Tortell PD 2000 Evolutionary and ecological perspectives on carbon acquisition in phytoplankton Limnol. Oceanogr. 45 744 750 10.4319/lo.2000.45.3.0744 

  23. 23 Hare CE Leblanc K DiTullio GR Kudela RM Zhang Y Lee PA 2007 Consequences of increased temperature and CO 2 for phytoplankton community structure in the Bering Sea Mar. Ecol. Prog. Ser. 352 9 16 10.3354/meps07182 

  24. 24 Murata N Takahashi S Nishiyama Y Allakhverdiev SI 2007 Photoinhibition of photosystem II under environmental stress Bba-Bioenergetics 1767 414 421 10.1016/j.bbabio.2006.11.019 17207454 

  25. 25 Yanguez K Lovazzano C Contreras-Porcia L Ehrenfeld N 2015 Response to oxidative stress induced by high light and carbon dioxide (CO 2 ) in the biodiesel producer model Nannochloropsis salina (Ochrophyta, Eustigmatales) Rev. Biol. Mar. Oceanog. 50 163 175 10.4067/S0718-19572015000200003 

  26. 26 Sukenik A Tchernov D Kaplan A Huertas E Lubian LM Livne A 1997 Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp J. Phycol. 33 969 974 10.1111/j.0022-3646.1997.00969.x 

  27. 27 Gentile MP Blanch HW 2001 Physiology and xanthophyll cycle activity of Nannochloropsis gaditana Biotechnol. Bioeng. 75 1 12 10.1002/bit.1158 11536121 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로