$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생태가뭄분석을 위한 식생건강지수의 가중치 매개변수 추정
Weighting Coefficient Estimation of Vegetation Health Index for Ecological Drought Analysis 원문보기

한국습지학회지 = Journal of wetlands research, v.22 no.4, 2020년, pp.275 - 285  

원정은 (부경대학교 지구환경시스템과학부 (환경공학전공)) ,  최정현 (부경대학교 지구환경시스템과학부 (환경공학전공)) ,  이옥정 (부경대학교 환경공학과) ,  서지유 (부경대학교 지구환경시스템과학부 (환경공학전공)) ,  김상단 (부경대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 2001년에서 2019년 기간 동안의 우리나라 주요 지점에서 원격으로 탐사된 정규화식생지수(Normalized Difference Vegetation Index, NDVI)와 지표면온도(Land Surface Temperature, LST)로부터 식생상태지수(Vegetation Condition Index, VCI), 열상태지수(Thermal Condition Index, TCI), 식생건강지수(Vegetation Health Index, VHI)를 추정한 후, 생태학적 가뭄의 영향을 평가할 목적으로 이들 지수들과 다양한 가뭄지수들 사이의 상관성이 분석된다. VCI와 TCI가 식생건강에 미치는 상대적 영향력은 지역에 따라 달라지는 것이 발견되었다. 우리나라 산림지역의 식생에 미치는 가뭄의 영향은 VCI보다는 TCI에서 더 분명하게 식별될 수 있었다. VCI와 TCI의 상대적인 영향력이 반영되어 추정된 VHI는 식생에 미치는 가뭄의 영향을 더 잘 설명할 수 있음이 제시된다.

Abstract AI-Helper 아이콘AI-Helper

In this study, after estimating VCI (Vegation Condition Index), TCI (Thermal Condition Index) and VHI (Vegetation Health Index) from the NDVI (Normalized Differentiation Vegetation Index) and LST (Land Surface Temperature) remotely sensed at major sites in Korea during the 2001-1919 period, the corr...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 VHI(VCI와 TCI도 포함)와 VHI가 관측된 달(1개월 전도 포함)의 가뭄지수들(다양한 time-scale 적용)의 상관관계가 아래와 같은 절차에 따라 조사된다.
  • 식생건강에 대한 VCI와 TCI의 기여도에 대한 사전지식이 없기 때문에, 보통 두 지수에 동일한 가중치를 할당하여 VHI를 계산한다. 본 연구의 목적은 2001년부터 2019년 동안 VHI에 대한 VCI와 TCI의 상대적 기여도를 분석하는 것이었다.
  • 본 연구의 목적은 우리나라 전 지역에 걸쳐 가뭄에 따른 식생건강상태를 특성화할 때 NDVI와 LST의 상대적 기여도를 평가하는 것이다. 이를 위해 VHI, VCI, TCI와 다양한 time-scale의 가뭄지수들 사이의 상관성이 분석된다.
  • , 2020)가 각각 적용되었다. 즉, 본 연구에서는 VHI와 다양한 가뭄지수들 사이의 상관관계를 최대화함으로써 VCI와 TCI의 상대적인 역할을 평가하여 VHI가 우리나라 식생에 미치는 가뭄의 영향을 더 잘 설명할 수 있도록 하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (63)

  1. Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C. and Tucker, C. (2006) A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sensing of Environment, 105(1), pp. 9-22. [DOI : http://doi:10.1016/j.rse.2006.06.003] 

  2. Bento, V., DaCamara, C., Trigo, I., Martins, J., and Duguay-Tetzlaff, A. (2017) Improving land surface temperature retrievals over mountainous regions. Remote Sensing, 9(1), p. 38. [DOI : 10.3390/rs9010038] 

  3. Bento, V., Gouveia, C., DaCamara, C. and Trigo, I. (2018) A Climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259, pp. 286-295. [DOI : 10.1016/j.agrformet.2018.05.014] 

  4. Bhuiyan, C., Singh, R. P., and Kogan, F. N. (2006) Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), pp. 289-302. [DOI : 10.1016/j.jag.2006.03.002] 

  5. Chen, J., Wilson, C., Tapley, B., Yang, Z. and Niu, G. (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. Journal of Geophysical Research, 114, B05404. [DOI : http://doi:10.1029/2008JB006056] 

  6. Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W. (2007) North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews, 81(1-2), pp. 93-134. [DOI : https://doi.org/10.1016/j.earscirev.2006. 12.002] 

  7. Dai, A. (2013) Increasing drought under global warming in observations and models. Nature climate change, 3(1), pp. 52-58. [DOI : https://doi.org/10.1038/nclimate1633] 

  8. Detsch, F., Otte, I., Appelhans, T., Hemp, A. and Nauss, T. (2016) Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sensing of Environment, 178, pp. 70-83. [DOI : https://doi.org/10.1016/j.rse.2016.03.007] 

  9. Diffenbaugh, N. S., Swain, D. L., and Touma, D. (2015) Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences, 112(13), pp. 3931-3936. [DOI : https://doi.org/10.1073/pnas.1422385112] 

  10. Ding, M., Li, L., Zhang, Y., Sun, X., Liu, L., Gao, J., Wang, Z. and Li, Y. (2015) Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 25(2), pp. 131-148. [DOI : https://doi.org/10.1007/s11442-015-1158-y] 

  11. Ding, Y., Hayes, M. and Widhalm, M. (2011) Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management, 20(4), pp. 434-446. [DOI : 10.1108/09653561111161752] 

  12. Duguay-Tetzlaff, A., Bento, V., Gottsche, F., Stockli, R., Martins, J., Trigo, I., Olesen, F., Bojanowski, J., da Camara, C., Kunz, H. (2015) Meteosat land surface temperature climate data record: achievable accuracy and potential uncertainties. Remote Sensing, 7(10), pp. 13139-13156. [DOI : https://doi.org/10.3390/rs71013139] 

  13. Fensholt, R., and Proud, S. R. (2012) Evaluation of earth observation based global long term vegetation trends- Comparing GIMMS and MODIS global NDVI time series. Remote sensing of Environment, 119, pp. 131-147. [DOI : https://doi.org/10.1016/j.rse.2011.12.015] 

  14. Gao, B. (1996) NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), pp. 257-266. [DOI : https://doi:10.1038/264541a0] 

  15. Gouveia, C., Trigo, R., Begueria, S. and Vicente-Serrano, S. (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, pp. 15-27. [DOI : https://doi.org/10.1016/j.gloplacha.2016.06.011] 

  16. Gu, Y., Brown, J., Verdin, J. and Wardlow, B. (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34, L06407. [DOI : http://doi:10.1029/2006GL029127]. 

  17. Gu, Y., Hunt, E., Wardlow, B, Basara, J., Brown, J. and Verdin, J. (2008) Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35, L22401. [DOI : http://doi:10.1029/2008GL035772] 

  18. Hobbins, M., Wood, A., McEvoy, D., Huntington, J., Morton, C., Anderson, M. and Hain, C. (2016) The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. Journal of Hydrometeorology, 17(6), pp. 1745-1761. [DOI : https://doi.org/10.1175/JHM-D-15-0121.1] 

  19. Jackson, T., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P. and Hunt, E. (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), pp. 475-482. [DOI : http://doi:10.1016/j.rse.2003.10.021] 

  20. Jain, S., Keshri, R., Goswami, A., Sarkar, A. and Chaudhry, A. (2009) Identification of drought-vulnerable areas using NOAA AVHRR data. International Journal of Remote Sensing, 30(10), pp. 2653-2668. [DOI: https://doi:10.1080/01431160802555788] 

  21. Karnieli, A., Agam, N., Pinker, R., Anderson, M., Imhoff, M., Gutman, G., Panov, N., Goldberg, A., Karnieli, A., Agam, N., Pinker, R., Anderson, M., Imhoff, M., Gutman, G., Panov, N. and Goldberg, A. (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. Journal of Climate, 23(3), pp. 618-633. [DOI : https://doi.org/10.1175/2009JCLI2900.1] 

  22. Kim, E., Choi, H. I., Park, M. J., Cho, S. J., and Kim, S. (2011) The effect of climate change on Korean drought occurrences using a stochastic soil water balance model. Scientific Research and Essays, 6(13), pp. 2771-2783. [DOI : https://doi.org/10.5897/SRE11.198] 

  23. Kim, S., Kim, B., Ahn, T. and Kim, H. (2011) Spatio-temporal characterization of Korean drought using severity-areaduration curve analysis, Water and Environment Journal, 25(1), pp. 22-30. [DOI : https://doi.org/10.1111/j.1747-6593.2009.00184.x] 

  24. Kim, S., Ryu, J. S., Oh, K. R., and Jeong, S. M. (2012) An Application of Copulas-based Joint Drought Index for Determining Comprehensive Drought Conditions. Journal of Korean Society of Hazard Mitigation, 12(1), pp. 223-230. [Korean Literature] 

  25. Klos, R., Wang, G., Bauerle, W. and Rieck, J. (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest health and monitoring data. Ecological Applications, 19(3), pp. 699-708. [DOI : https://doi.org/10.1890/08-0330.1] 

  26. Kogan, F. (1997) Global drought watch from space. Bulletin of the American Meteorological Society, 78(4), pp. 621-636. [DOI : https://doi.org/10.1175/1520-0477(1997)078 2.0.CO;2] 

  27. Kogan, F. (2001) Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), pp. 1949-1964. [DOI : https://doi.org/10.1175/1520-0477(2001)082 2.3.CO;2] 

  28. Kogan, F., Salazar, L. and Roytman, L. (2012) Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. International Journal of Remote Sensing, 33(9), pp. 2798-2814. [DOI : https://doi.org/10. 1080/01431161.2011.621464] 

  29. Lakshmi, V. (ed.). (2016) Remote sensing of hydrological extremes. Springer Remote Sensing/Photogrammetry. Springer International Publishing. 

  30. Lee, H., Nam, W., Yoon, D., Hong, E., Kim, D., Svoboda, M., Tadesse, T. and Wardlow, B. (2019) Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea. Journal of the Korean Society of Agricultural Engineers, 61(3), pp. 1-14. [Korean Literature] 

  31. Lee, H., Nam, W., Yoon, D., Hong, E., Kim, T., Park, J., and Kim, D. (2020) Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea. Journal of the Korean Society of Agricultural Engineers, 62(2), pp. 63-73. [Korean Literature] 

  32. Martins, J., Trigo, I. F., Bento, V. A., and Da Camara, C. (2016) A Physically constrained calibration database for land surface temperature using infrared retrieval algorithms. Remote Sensing, 8(10), p. 808. [DOI : https://doi.org/10.3390/rs8100808] 

  33. McKee, T., Doesken, N. and Kleist, J. (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, California, 17-22 January 1993, pp. 179-183. 

  34. McVicar, T. and Jupp, D. (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agricultural Systems, 57(3), pp. 399-468, [DOI : https://doi:10.1016/S0308-521X(98)00026-2] 

  35. Mishra, A. K., and Singh, V. P. (2010) A review of drought concepts. Journal of hydrology, 391(1-2), pp. 202-216. [DOI : https://doi.org/10.1016/j.jhydrol.2010.07.012] 

  36. Mun, Y., Nam, W., Jeon, M., Kim, T., Hong, E., Hayes, M., and Tadesse, T. (2019) Application of meteorological drought index using Climate Hazards Group InfraRed Precipitation wigh Station (CHIRPS) based on global satellite-assisted precipitation products in Korea. Journal of the Korean Society of Agriculture Engineers, 61(2), pp. 1-11. [Korean Literature] 

  37. Otkin, J., Anderson, M., Hain, C., and Svoboda, M. (2014) Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology, 15, pp. 938-956. [DOI : https://doi.org/10.1175/JHM-D-13-0110.1] 

  38. Otkin, J., Anderson, M., Hain, C., Mladenova, I., Basara, J., and Svoboda, M. (2013) Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14, pp. 1057-1074.[DOI : https://doi.org/10.1175/JHM-D-12-0144.1] 

  39. Park, M., Sim, H., Park, Y. and Kim, S. (2015) Drought Severity-Duration-Frequency Analysis based on KMA 1-km Resolution RCP Scenario. Journal of Korean Society of Hazard Mitigation, 15(3), pp. 347-355. [Korean Literature] [DOI : http://dx.doi.org/10.9798/KOSHAM.2015.15.3.347] 

  40. Phillips, O., Aragao, L., Lewis, S., Fisher, J., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T.R., Banki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A., Cardozo, N., Czimczik, C., Feldpausch, T., Freitas, M., Gloor, E., Higuchi, N., Jimenez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D., Nepstad, D., Patino, S., Penuela, M., Prieto, A., Ramirez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A., ter Steege, H., Stropp, J., Vasquez, R., Zelazowski, P., Davila, E., Andelman, S., Andrade, A., Chao, K., Erwin, T., Di Fiore, A., Honorio, E., Keeling, H., Killeen, T., Laurance, W., Cruz, A., Pitman, N., Vargas, P., Ramirez-Angulo, H., Rudas, A., Salamao, R., Silva, N., Terborgh, J. and Torres-Lezama, A. (2009) Drought sensitivity of the Amazon Rainforest. Science, 323(5919), pp. 1344-1347. [DOI : 10.1126/science.1164033] 

  41. Quiring, S. and Ganesh, S. (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150(3), pp. 330-339. [DOI : https://doi.org/10.1016/j.agrformet.2009.11.015] 

  42. Ryu, J., Ahn, J. and Kim, S. (2012) An application of drought severity-area-duration curves using copulas-based joint drought index. Journal of Korea Water Resources Association, 45(10), pp. 1043-1050. [Korean Literature] [DOI : 10.3741/JKWRA.2012.45.10.1043] 

  43. Seiler, R., Kogan, F. and Sullivan, J. (1998) AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Advances in Space Research, 21(3), pp. 481-484. [DOI : https://doi.org/10.1016/S0273-1177(97)00884-3] 

  44. Sim, H. J., Ryu, J. S., Ahn, J., Kim, J., and Kim, S. (2013) Real-time drought index for determining drought conditions in natural water supply system communities. Journal of the Korean Society of Hazard Mitigation, 13(5), pp. 365-374. [Korean Literature] [DOI : http://dx.doi.org/10.9798/KOSHAM.2013.13.5.365] 

  45. Singh, R., Roy, S. and Kogan, F. (2003) Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International Journal of Remote Sensing, 24(22), pp. 4393-4402. [DOI : https://doi.org/10.1080/0143116031000084323] 

  46. Sun, D. and Kafatos, M. (2007) Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), L24406. [DOI : https://doi.org/10.1029/2007GL031485] 

  47. Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2014) Global warming and changes in drought. Nature Climate Change, 4(1), pp. 17-22. [DOI : https://doi.org/10.1038/nclimate2067] 

  48. Tucker, C., Pinzon, J., Brown, M., Slayback, D., Pak, E., Mahoney, R., Vermote, E. and El Saleous, N. (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), pp. 4485-4498. [DOI : https://doi.org/10.1080/01431160500168686] 

  49. Unganai, L. and Kogan, F. (1998) Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sensing of Environment, 63(3), pp. 219-232. [DOI : https://doi.org/10.1016/S0034-4257(97)00132-6] 

  50. Vicente-Serrano, S. M., Cabello, D., Tomas-Burguera, M., Martin-Hernandez, N., Begueria, S., Azorin-Molina, C., and Kenawy, A. E. (2015) Drought variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices (1982-2011). Remote Sensing, 7(4), pp. 4391-4423. [DOI : https://doi.org/10.3390/rs70404391] 

  51. Vicente-Serrano, S., Lopez-Moreno, J., Begueria, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., Garcia-Ruiz, J., Azorin-Molina, C., Moran-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F. and Espejo, F. (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), 044001. [DOI : 10.1088/1748-9326/9/4/044001] 

  52. Wang, L. and Qu, J. (2009) Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), pp. 237-247. [DOI : https://doi.org/10.1007/s11707-009-0023-7] 

  53. Wang, L., and Qu, J. (2007) NMDI: A Normalized Multi-band Drought Index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34, L20405. [DOI : http://doi:10.1029/2007GL031021] 

  54. Wang, L., Qu, J., Hao, X. and Zhu, Q. (2008) Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. International Journal of Remote Sensing, 29(24), pp. 7065-7075. [DOI : https://doi.org/10.1080/01431160802226034] 

  55. Wardlow, B. D., Anderson, M. C., and Verdin, J. P. (eds.). (2012) Remote sensing of drought: Innovative monitoring approaches. drought and water Crises. CRC Press. 

  56. Wilhite, D., Svoboda, M. and Hayes, M. (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resources Management, 21(5), pp. 763-774. [DOI : https://doi.org/10.1007/s11269-006-9076-5] 

  57. Won, J., Choi, C., Lee, O. and Kim, S. (2020) Copula-based Joint Drought Index using SPI and EDDI and its application to climate change, Science of the Total Environment, 744, 140701. [DOI : https://doi.org/10.1016/j.scitotenv.2020.140701] 

  58. Won, J., Jang, S., Kim, K. and Kim, S. (2018) Applicability of the evaporative demand drought index. Journal of Korean Society of Hazard Mitigation, 18(6), pp. 431-442. [Korean Literature] [DOI : https://doi.org/10.9798/KOSHAM.2018.18.6.431] 

  59. Yao, N., Li, Y., Lei, T. and Peng, L. (2018) Drought evolution, severity and trends in mainland China over 1961-2013. Science of the Total Environment, 616, pp. 73-89. [DOI : https://doi.org/10.1016/j.scitotenv.2017.10.327] 

  60. Yoon, D., Nam, W., Lee, H., Hong, E., and Kim, T. (2020a) Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis. Journal of the Korean Society of Agricultural Engineers, 62(3), pp. 51-61. [Korean Literature] 

  61. Yoon, D., Nam, W., Lee, H., Hong, E., Kim, T., Kim, D., Shin, A., and Svoboda, M. (2018a) Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers, 60(6), pp. 121-131. [Korean Literature] 

  62. Yoon, D., Nam, W., Lee, H., Hong, E., Song, F., Wardlow, B., Tadesse, T., Svoboda, M., Hayes, M. and Kim, D. (2020b) Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing, 12(3), pp. 1-16. [DOI : https://doi.org/10.3390/rs12030444] 

  63. Yoon, Y., Kim, N., Lee, S., Park, S., Son, E., Jang, J., and Lee, Y. (2018b) Inter-comparisons of Satellite-based Drought Indices on the Cropland in Korea, 2001-2017. Journal of Climate Research, 13(4), pp. 275-296. [DOI : http://dx.doi.org/10.14383/cri.2018.13.4.275] 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로