최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.37 no.6 pt.2, 2021년, pp.1881 - 1890
손상훈 (부경대학교 지구환경시스템과학부 공간정보시스템전공) , 김진수 (부경대학교 공간정보시스템공학과)
Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations...
Amini, H., S.M. Taghavi-Shahri, S.B. Henderson, K. Naddafi, R. Nabizadeh, and M. Yunesian, 2014. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran, Science of the Total Environment, 488: 343-353.
Brokamp, C., R. Jandarov, M. Hossain, and P. Ryan, 2018. Predicting daily urban fine particulate matter concentrations using a random forest model, Environmental Science and Technology, 52(7): 4173-4179.
Choubin, B., M. Abdolshahnejad, E. Moradi, X. Querol, A. Mosavi, S. Shamshirband, and P. Ghamisi, 2020. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain, Science of The Total Environment, 701(20): 1-11.
Chudnovsky, A.A., P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, Y. Wang, and J. Schwartz, 2014. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals, Atmospheric Environment, 89: 189-198.
Danesh Yazdi, M., Z. Kuang, K. Dimakopoulou, B. Barratt, E. Suel, H, Amini, A. Lyapustin, K. Katsouyanni, and J. Schwartz, 2020. Predicting fine particulate matter (PM 2.5 ) in the Greater London Area: an ensemble approach using machine learning methods, Remote Sensing, 12(6): 914.
Goyal, P., A.T. Chan, and N. Jaiswal, 2006. Statistical models for the prediction of respirable suspended particulate matter in urban cities, Atmospheric Environment, 40(11): 2068-2077.
Harishkumar, K.S., K.M. Yogesh, and I. Gad, 2020. Forecasting air pollution particulate matter (PM 2.5 ) using machine learning regression models, Procedia Computer Science, 171: 2057-2066.
Kim, S.Y., L. Sheppard, S. Bergen, A.A. Szpiro, P.D. Sampson, J.D. Kaufman, and S. Vedal, 2016. Prediction of fine particulate matter chemical components with a spatio-temporal model for the Multi-Ethnic Study of Atherosclerosis cohort, Journal of Exposure Science and Environmental Epidemiology, 26(5): 520-528.
Laden, F., L.M. Neas, D.W. Dockery, and J. Schwartz, 2000. Association of fine particulate matter from different sources with daily mortality in six US cities, Environmental Health Perspectives, 108(10): 941-947.
Liu, K., D. Tian, H. Xu, H. Wang, and G. Yang, 2019. Quantitative analysis of toxic elements in polypropylene (PP) via laser-induced breakdown spectroscopy (LIBS) coupled with random forest regression based on variable importance (VIRFR), Analytical Methods, 11: 4769-4774.
Masood, A. and K. Ahmad, 2020. A model for particulate matter (PM 2.5 ) prediction for Delhi based on machine learning approaches, Procedia Computer Science, 167: 2101-2110.
Mehdipour, V., D.S. Stevenson, M. Memarianfard, and P. Sihag, 2018. Comparing different methods for statistical modeling of particulate matter in Tehran, Iran, Air Quality, Atmosphere and Health, 11(10): 1155-1165.
Munir, S., T.M. Habeebullah, A.R. Seroji, E.A. Morsy, A.M. Mohammed, W.A. Saud, A.E. Abdou, and A.H. Awad, 2013. Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach, Aerosol and Air Quality Research, 13(3): 901-910.
Ordieres, J.B., E.P. Vergara, R.S. Capuz, and R.E. Salazar, 2005. Neural network prediction model for fine particulate matter (PM 2.5 ) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua), Environmental Modelling and Software, 20(5): 547-559.
Park, S., S. Son, J. Bae, D. Lee, J-J. Kim, and J. Kim, 2021. Robust Spatiotemporal Estimation of PM Concentrations Using Boosting-Based Ensemble Models, Sustainability, 13(24): 13782.
Polichetti, G., S. Cocco, A. Spinali, V. Trimarco, and A. Nunziata, 2009. Effects of particulate matter (PM 10 , PM 2.5 and PM 1 ) on the cardiovascular system, Toxicology, 261(1-2): 1-8.
Schwartz, J. and L.M. Neas, 2000. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren, Epidemiology, 11(1): 6-10.
Seo, J.D., 2016. Foreign Exchange Rate Forecasting Using the GARCH extended Random Forest Model, Journal of Industrial Economics and Business, 29(5): 1607-1628 (in Korean with English abstract).
Stafoggia, M., T. Bellander, S. Bucci, M. Davoli, K. de Hoogh, F. de' Donato, C. Gariazzo, A. Lyapustin, P. Michelozzi, M. Renzi, M. Scortichini, A. Shtein, G. Viegi, I. Kloog, and J. Schwartz, 2019. Estimation of daily PM 10 and PM 2.5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model, Environment International, 124: 170-179.
Suleiman, A., M.R. Tight, and A.D. Quinn, 2019. Applying machine learning methods in managing urban concentrations of traffic-related particulate matter (PM 10 and PM 2.5 ), Atmospheric Pollution Research, 10(1): 134-144.
Tai, A.P., L.J. Mickley, and D.J. Jacob, 2010. Correlations between fine particulate matter (PM 2.5 ) and meteorological variables in the United States: Implications for the sensitivity of PM 2.5 to climate change, Atmospheric Environment, 44(32): 3976-3984.
Wan, Y., M. Xu, H. Huang, and S. Xi Chen, 2021. A spatio-temporal model for the analysis and prediction of fine particulate matter concentration in Beijing, Environmetrics, 32(1): e2648.
Woodruff, T.J., J.D. Parker, and K.C. Schoendorf, 2006. Fine particulate matter (PM 2.5 ) air pollution and selected causes of postneonatal infant mortality in California, Environmental Health Perspectives, 114(5): 786-790.
Zhang, L., L. Liu, Y. Zhao, S. Gong, X. Zhang, D.K. Henze, S.L. Capps, T. Fu, Q. Zhang, and Y. Wang, 2015. Source attribution of particulate matter pollution over North China with the adjoint method, Environmental Research Letters, 10(8): 084011.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.