최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.42 no.6, 2021년, pp.268 - 276
신재영 (원광대학교 전자공학과)
Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to...
Boas DA, Elwell CE, Ferrari M, Taga G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. 2014;85:Part 1:1-5.
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. 2014;85:Part 1:6-27.
Quaresima V, Ferrari M. A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go? 2019;6(3):87.
Nazeer H, Naseer N, Khan RA, Noori FM, Qureshi NK, Khan US, Khan MJ. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. 2020;17(5):056025.
Qureshi NK, Naseer N, Noori FM, Nazeer H, Khan RA, Saleem S. Enhancing classification performance of functional near-infrared spectroscopy-brain-computer interface using adaptive estimation of general linear model coefficients. 2017;11(33).
Nazeer H, Naseer N, Mehboob A, Khan MJ, Khan RA, Khan US, Ayaz Y. Enhancing classification performance of fNIRS-BCI by identifying cortically active channels using the z-score method. 2020;20(23):6995.
Shin J, Kwon J, Choi J, Im C-H. Performance enhancement of a brain-computer interface using high-density multi-distance NIRS. 2017;7:16545.
Shin J, Im C-H. Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regularized Linear Discriminant Analysis Ensemble Classifier Based on Bootstrap Aggregating. 2020;14(168).
Ma T, Wang S, Xia Y, Zhu X, Evans J, Sun Y, He S. CNN-based classification of fNIRS signals in motor imagery BCI system. 2021;18(5):056019.
Nagasawa T, Sato T, Nambu I, Wada Y. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy. 2020;17(1):016068.
Sm JA, Chhabra H, Shajil N, Venkatasubramanian G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. 2020;62:102133.
Cui X, Bray S, Reiss AL. Speeded near infrared spectroscopy (NIRS) response detection. 2010;5(11):15474.
Shin J, von Luhmann A, Kim D-W, Mehnert J, Hwang H-J, Muller K-R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. 2018;5:180003.
Shin J, von Luhmann A, Blankertz B, Kim D-W, Jeong J, Hwang H-J, Muller K-R. Open access dataset for EEG+NIRS single-trial classification. 2017;25(10):1735-1745.
Shin J, Muller K-R, Hwang H-J. Near-infrared spectroscopy (NIRS) based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. 2016;6(1):36203.
Hwang H-J, Choi H, Kim J-Y, Chang W-D, Kim D-W, Kim K, Jo S, Im C-H. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy. 2016;21(9):091303.
Hosseini R, Walsh B, Tian FH, Wang SY. An fNIRS-based Feature Learning and Classification Framework to Distinguish Hemodynamic Patterns in Children Who Stutter. 2018;26(6):1254-1263.
Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. 2017;18.
Noori FM, Naseer N, Qureshi NK, Nazeer H, Khan RA. Optimal feature selection from fNIRS signals using genetic algorithms for BCI. 2017;647:61-66.
Shin J, Kwon J, Im C-H. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State. 2018;23:5.
Zhang Q, Strangman GE, Ganis G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? 2009;45(3):788-794.
Falk TH, Guirgis M, Power S, Chau T. Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. 2011;19(2):136-146.
Power SD, Kushki A, Chau T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI. 2012;5(1):141.
Power SD, Kushki A, Chau T. Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. 2011;8(6):066004.
Schudlo LC, Chau T. Towards a ternary NIRS-BCI: single-trial classification of verbal fluency task, Stroop task and unconstrained rest. 2015;12(6):066008.
Tibshirani R. Regression shrinkage and selection via the lasso. 1996;58(1):267-288.
Zou H, Hastie T. Regularization and variable selection via the elastic net. 2005;67(2):301-320.
Svinkunaite L, Horschig J, Floor-Westerdijk, M. Employing cardiac and respiratory features extracted from fNIRS signals for mental workload classification. SPIE BiOS. online. 2021.
Guyon I, Elisseeff A. An introduction to variable and feature selection. 2003;3(Mar.):1157-1182.
Naseer N, Hong K-S. fNIRS-based brain-computer interfaces: a review. 2015;9(1):3.
Yap BW, Sim CH. Comparisons of various types of normality tests. 2011;81(12):2141-2155.
Hochberg Y, Tamhane AC. Multiple comparison procedures. John Wiley & Sons, Inc. 1987.
Fernandez Rojas R, Huang X, Ou K-L. A machine learning approach for the identification of a biomarker of human pain using fNIRS. 2019;9(1):5645.
Chen L, Li Q, Song H, Gao R, Yang J, Dong W, Dang W. Classification of schizophrenia using general linear model and support vector machine via fNIRS. 2020;43(4):1151-1160.
Herff C, Heger D, Fortmann O, Hennrich J, Putze F, Schultz T. Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. 2013;7(1):935.
Grubbs FE. Sample criteria for testing outlying observations. 1950;21(1):27-58.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.