$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가
Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.42 no.6, 2021년, pp.268 - 276  

신재영 (원광대학교 전자공학과)

Abstract AI-Helper 아이콘AI-Helper

Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to...

Keyword

표/그림 (11)

참고문헌 (36)

  1. Boas DA, Elwell CE, Ferrari M, Taga G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. 2014;85:Part 1:1-5. 

  2. Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. 2014;85:Part 1:6-27. 

  3. Quaresima V, Ferrari M. A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go? 2019;6(3):87. 

  4. Nazeer H, Naseer N, Khan RA, Noori FM, Qureshi NK, Khan US, Khan MJ. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. 2020;17(5):056025. 

  5. Qureshi NK, Naseer N, Noori FM, Nazeer H, Khan RA, Saleem S. Enhancing classification performance of functional near-infrared spectroscopy-brain-computer interface using adaptive estimation of general linear model coefficients. 2017;11(33). 

  6. Nazeer H, Naseer N, Mehboob A, Khan MJ, Khan RA, Khan US, Ayaz Y. Enhancing classification performance of fNIRS-BCI by identifying cortically active channels using the z-score method. 2020;20(23):6995. 

  7. Shin J, Kwon J, Choi J, Im C-H. Performance enhancement of a brain-computer interface using high-density multi-distance NIRS. 2017;7:16545. 

  8. Shin J, Im C-H. Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regularized Linear Discriminant Analysis Ensemble Classifier Based on Bootstrap Aggregating. 2020;14(168). 

  9. Ma T, Wang S, Xia Y, Zhu X, Evans J, Sun Y, He S. CNN-based classification of fNIRS signals in motor imagery BCI system. 2021;18(5):056019. 

  10. Nagasawa T, Sato T, Nambu I, Wada Y. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy. 2020;17(1):016068. 

  11. Sm JA, Chhabra H, Shajil N, Venkatasubramanian G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. 2020;62:102133. 

  12. Cui X, Bray S, Reiss AL. Speeded near infrared spectroscopy (NIRS) response detection. 2010;5(11):15474. 

  13. Shin J, von Luhmann A, Kim D-W, Mehnert J, Hwang H-J, Muller K-R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. 2018;5:180003. 

  14. Shin J, von Luhmann A, Blankertz B, Kim D-W, Jeong J, Hwang H-J, Muller K-R. Open access dataset for EEG+NIRS single-trial classification. 2017;25(10):1735-1745. 

  15. Shin J, Muller K-R, Hwang H-J. Near-infrared spectroscopy (NIRS) based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. 2016;6(1):36203. 

  16. Hwang H-J, Choi H, Kim J-Y, Chang W-D, Kim D-W, Kim K, Jo S, Im C-H. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy. 2016;21(9):091303. 

  17. Hosseini R, Walsh B, Tian FH, Wang SY. An fNIRS-based Feature Learning and Classification Framework to Distinguish Hemodynamic Patterns in Children Who Stutter. 2018;26(6):1254-1263. 

  18. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. 2017;18. 

  19. Noori FM, Naseer N, Qureshi NK, Nazeer H, Khan RA. Optimal feature selection from fNIRS signals using genetic algorithms for BCI. 2017;647:61-66. 

  20. Shin J, Kwon J, Im C-H. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State. 2018;23:5. 

  21. Zhang Q, Strangman GE, Ganis G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? 2009;45(3):788-794. 

  22. Falk TH, Guirgis M, Power S, Chau T. Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. 2011;19(2):136-146. 

  23. Power SD, Kushki A, Chau T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI. 2012;5(1):141. 

  24. Power SD, Kushki A, Chau T. Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. 2011;8(6):066004. 

  25. Schudlo LC, Chau T. Towards a ternary NIRS-BCI: single-trial classification of verbal fluency task, Stroop task and unconstrained rest. 2015;12(6):066008. 

  26. Tibshirani R. Regression shrinkage and selection via the lasso. 1996;58(1):267-288. 

  27. Zou H, Hastie T. Regularization and variable selection via the elastic net. 2005;67(2):301-320. 

  28. Svinkunaite L, Horschig J, Floor-Westerdijk, M. Employing cardiac and respiratory features extracted from fNIRS signals for mental workload classification. SPIE BiOS. online. 2021. 

  29. Guyon I, Elisseeff A. An introduction to variable and feature selection. 2003;3(Mar.):1157-1182. 

  30. Naseer N, Hong K-S. fNIRS-based brain-computer interfaces: a review. 2015;9(1):3. 

  31. Yap BW, Sim CH. Comparisons of various types of normality tests. 2011;81(12):2141-2155. 

  32. Hochberg Y, Tamhane AC. Multiple comparison procedures. John Wiley & Sons, Inc. 1987. 

  33. Fernandez Rojas R, Huang X, Ou K-L. A machine learning approach for the identification of a biomarker of human pain using fNIRS. 2019;9(1):5645. 

  34. Chen L, Li Q, Song H, Gao R, Yang J, Dong W, Dang W. Classification of schizophrenia using general linear model and support vector machine via fNIRS. 2020;43(4):1151-1160. 

  35. Herff C, Heger D, Fortmann O, Hennrich J, Putze F, Schultz T. Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. 2013;7(1):935. 

  36. Grubbs FE. Sample criteria for testing outlying observations. 1950;21(1):27-58. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로