최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.39 no.6, 2021년, pp.381 - 392
김준석 (Department of Spatial Information Engineering, Namseoul University) , 홍일영 (Department of Spatial Information Engineering, Namseoul University)
In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) ...
Chen, Z., Zhang, T., and Ouyang, C. (2018), End-to-end airplane detection using transfer learning in remote sensing images. Remote Sensing, 10(1), pp.139.
Cheng, G., Han, J., and Lu, X. (2017), Remote sensing image scene classification: Benchmark and state of the art. In Proceedings of the IEEE, 105(10), pp. 1865-1883.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009,), Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255.
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., and Zisserman, A. (2010), The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), pp.303-338.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
Ham, S., and Lee., I. (2019). Semantic Segmentation of Drone Images Using Deep Learning Models Trained with National Geospatial Data. Journal of the Korean Society Geospatial Information Science, 27(3), 27-38. (in Korean with English abstract)
Kharchenko, V., and Chyrka, I. (2018), Detection of airplanes on the ground using YOLO neural network. In 2018 IEEE 17th international conference on mathematical methods in electromagnetic theory (MMET), IEEE, pp. 294-297.
Kim, H., Kim, J., and Kim, Y, (2019). A Study on the Object-based Building Extraction Using UAV Imagery. Journal of the Korean Society Geospatial Information Science, 27(4), 21-28. (in Korean with English abstract)
Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Goncalves, G. R., Schwartz, W. R., and Menotti, D. (2018), A robust real-time automatic license plate recognition based on the YOLO detector. In 2018 international joint conference on neural networks (ijcnn), IEEE, pp. 1-10.
Li, K., Wan, G., Cheng, G., Meng, L., and Han, J. (2020). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307.
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... and Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
Lu, J., Ma, C., Li, L., Xing, X., Zhang, Y., Wang, Z., and Xu, J. (2018). A vehicle detection method for aerial image based on YOLO. Journal of Computer and Communications, 6(11), 98-107.
Pavlov, V.A., and Galeeva, M.A. (2019), Detection and recognition of objects on aerial photographs using convolutional neural networks. In Journal of Physics: Conference Series (Vol. 1326, No. 1, p. 012038). IOP Publishing.
Pham, M.T., Courtrai, L., Friguet, C., Lefevre, S., and Baussard, A. (2020). YOLO-Fine: One-stage detector of small objects under various backgrounds in remote sensing images. Remote Sensing, 12(15), 2501.
Pi, Y., Nath, N.D., and Behzadan, A.H. (2020). Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, 101009.
Radovic, M., Adarkwa, O., and Wang, Q. (2017). Object recognition in aerial images using convolutional neural networks. Journal of Imaging, 3(2), 21.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788.
Wang, H., Tong, X., and Lu, F. (2020). Deep learning based target detection algorithm for motion capture applications. In Journal of Physics: Conference Series (Vol. 1682, No. 1, p. 012032). IOP Publishing.
Yun Y., Jung S., Kim T., Lee K., Park., Yeom J., and Han Y. (2019). Detection of Damaged Buildings in Forest Fire Area using PlanetScope Satellite Images and UAV image. Proceedings of Korean Society for Geospatial information Science, 125-128.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.