$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향
Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.6, 2021년, pp.664 - 670  

김준섭 (울산대학교 화학공학부) ,  김준범 (울산대학교 화학공학부)

초록
AI-Helper 아이콘AI-Helper

스테인리스강은 기계적 강도와 전기 전도성이 우수하고 가공이 용이하여 고분자전해질 연료전지분리판으로 적용되고 있다. 하지만 스테인리스강의 부식으로 인하여 접촉 저항이 증가하여 연료전지 성능이 저하하는 문제점이 있고, 귀금속 재료를 코팅하여 내식성을 높일 수 있으나 비용이 증가하는 단점이 있다. 금속 분리판의 내구성 확보와 경제성 개선을 위하여 고분자전해질 연료전지에서 스테인리스 강 분리판의 부식 거동과 부동태막에 의한 영향을 분석할 필요가 있다. 본 연구에서는 반응 면적이 25 cm2인 SUS316L 분리판을 제작하였고, 수소극과 공기극에 대한 SUS316L 분리판의 부식 거동을 분석하였다. SUS316L 분리판 부식이 연료전지 성능에 미치는 영향을 분극 곡선과 임피던스, 접촉저항을 측정하여 평가하였다. 연료전지 구동 간에 배출 수를 포집하여 SUS316L 분리판에서 용출된 금속 이온의 농도를 분석하였다. SUS316L 분리판에 대하여 공기극에서보다 수소극에서 부식이 활발하게 발생하는 것을 확인하였다. 연료전지 반응에 따라 부동태막이 형성되어 접촉 저항이 증가하였고, 부동태막이 형성된 이후에도 지속적으로 금속 이온이 용출되었다.

Abstract AI-Helper 아이콘AI-Helper

Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although ...

주제어

표/그림 (10)

참고문헌 (24)

  1. A. Alaswad, A. Omran, J. R. Sodre, T. Wilberforce, G. Pignatelli, M. Dassisti, A. Baroutaji, and A. G. Olabi, Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells, Energies, 14, 144 (2021). 

  2. E. Ogungbemi, T. Wilberforce, O. Ijaodola, J. Thompson, and A. G. Olabi, Selection of proton exchange membrane fuel cell for transportation, Int. J. Hydrog. Energy, 46, 30625-30640 (2021). 

  3. Y. Song, C. Zhang, C. Y. Ling, M. Han, R. Y. Yong, D. Sun, and J. Chen, Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell, Int. J. Hydrog. Energy, 45, 29832-29847 (2020). 

  4. S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H. K. Lee, W. K. Lee, and J. W. Weidner, Investigation of bipolar plate materials for proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 41, 13688-13696 (2016). 

  5. Y. Leng, P. Ming, D. Yang, and C. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451, 227783 (2020). 

  6. N. F. Asri, T. Husaini, A. B. Sulong, E. H. Majlan, and R. W. D. Wan, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, Int. J. Hydrog. Energy, 42, 9135-9148 (2017). 

  7. K. Fu, T. Tian, Y. Chen, S. Li, C. Cai, Y. Zhang, W. Guo, and M. Pan, The durability investigation of a 10-cell metal bipolar plate proton exchange membrane fuel cell stack, Int. J. Energy Res., 43, 2605-2614 (2018). 

  8. P. Yi, D. Zhang, D. Qiu, L. Peng, and X. Lai, Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 44, 6813-6843 (2019). 

  9. K. Karacan, S. Celik, S. Toros, M. Alkan, and U. Aydin, Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells, Int. J. Hydrog. Energy, 45, 35149-35161 (2020). 

  10. J. Wind, R. Spah, W. Kaiser, and G. Bohm, Metallic bipolar plates for PEM fuel cells, J. Power Sources, 105, 256-260 (2002). 

  11. M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Waldeker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, J. Power Sources, 196. 8967-8972 (2011). 

  12. A. Miyazawa, E. Tada, and A. Nishikata, Influence of corrosion of SS316L bipolar plate on PEFC performance, J. Power Sources, 231. 226-233 (2013). 

  13. H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, J. Power Sources, 115, 243-251 (2003). 

  14. J. Barranco, F. Barreras, A. Lozano, and M. Maza, Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plate, J. Power Sources, 196, 4283-4289 (2011). 

  15. S. Laedre, O. E. Kongstein, A. Oedegaard, F. Seland, and H. Karoliussen, Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell, J. Electrochem. Soc., 166, F853-F859 (2019). 

  16. Drive U. Fuel cell technical team roadmap. New York: US Drive Partnership, 1-34 (2017). 

  17. R. A. Antunes, M. C. L. Oliveria, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, Int. J. Hydrog. Energy, 35, 3632-3647 (2010). 

  18. E. Kahveci and I. Taymaz, Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle, Fuel, 253, 1274-1281 (2019). 

  19. F. Madadi, A. Rezaeian, H. Edris, and M. Zhiani, Improving performance in PEMFC by applying different coatings to metallic bipolar plates, Mater. Chem. Phys., 238, 121911 (2019). 

  20. C. Zhou, J. Wang, S. Hu, H. Tao, B. Fang, L. Li, J. Zheng and L. Zhang, Enhanced corrosion resistance of additively manufactured 316L stainless steel after heat treatment, J. Electrochem. Soc., 167, 141504 (2020). 

  21. Y. Wang and D. O. Northwood, Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cell, Electrochim. Acta, 52, 6793-6798 (2007). 

  22. K. Feng, G. Wu, Z. Li, X. Cai, and P. K. Chu, Corrosion behavior of SS316L in simulated and accelerated PEMFC environments, Int. J. Hydrog. Energy, 36, 13032-13042 (2011). 

  23. Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of potential on corrosion behavior of uncoated SS316L bipolar plate in simulated PEM fuel cell cathode environment, Fuel Cells, 14, 868-875 (2014). 

  24. Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application, Appl. Surf. Sci., 320, 274-280 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로